Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T12:14:56.731Z Has data issue: false hasContentIssue false

Electric linear dichroism and birefringence of biological polyelectrolytes

Published online by Cambridge University Press:  17 March 2009

Elliot Charney
Affiliation:
Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.

Extract

The phenomenon of electro-optic orientation was discovered by John Kerr in 1875 and has been used extensively for determining the optical polarizability anisotropy of small molecules and for high-speed transmission of optical signals. Measurements on biopolymers have been made at least since 1950, but only in the last decade have these yielded definitive structural and physical information. In the course of this review, it should become obvious that among the reasons for this late development is the inherent difficulty of analysing optical data that depend simultaneously on intrinsic optical-structural properties of the molecules, and on their degree of orientation under the conditions of the experiment. The problem has been particularly difficult far biopolymers such as the nucleic acids, whose polarization in an electric field is dependent on their special polyelectrolyte properties. These unique electrostatic properties are an important feature in the interpretation of the experimental observations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J., Harborne, N., Rau, D. C. & Gould, N. (1982). Participation of core histone tails in the stabilization of the chromatin solenoid. J. Cell Biol. 93, 285297.CrossRefGoogle ScholarPubMed
Allan, J., Rau, D. C., Harborne, N. & Gould, N. (1984). Higher order structure in a short repeat length chromatin. J. Cell Biol. 98, 13201327.CrossRefGoogle Scholar
Allen, F. S. (1981). Electro-optics of viruses and bacteriophages. In Molecular electro-optics (ed. Krause, S.), NATO Advanced Study Institute Series, Series B, Physics, vol. 64, pp. 399415. New York and London: Plenum Press.CrossRefGoogle Scholar
Arnott, S. & Hukins, D. W. L. (1972). Optimized parameters for A-DNA and B-DNA. Biochem. biophys. Res. Commun. 47, 15041510.CrossRefGoogle Scholar
Balasubramanian, D. & Charney, E. (1981). Effect of the charge density of linear polyelectrolytes on their orientation in an electric field. A study of Poly(rA). Poly(rU) and Poly(rA). zPoly(rU). J. phys. Chem. 85, 19431947.CrossRefGoogle Scholar
Barkley, M. & Zimm, B. H. (1979). Theory of twisting and bending of chain macro molecules; analysis of the fluorescence depolarization of DNA. J. chem. Phys. 70, 29913007.CrossRefGoogle Scholar
Behe, M. & Felsenfeld, G. (1981). Effects of methylation on a synthetic polynucleotide: the B-Z transition in Poly (dG-m5dC)-Poly(dG-m5dC). Proc. natn. Acad. Sci. USA 78, 16191623.CrossRefGoogle ScholarPubMed
Benoit, H. (1951 a). Application of the Kerr effect to the study of solutions of thymonucleic acid. J. Chim. phys. 47, 719721.CrossRefGoogle Scholar
Benoit, H. (1951 b). The Kerr effect demonstrated by dilute solutions of rigid macromolecules. Ann. Phys. 6, 561609.Google Scholar
Bernengo, J. C. (1981). The electro-optics of proteins. In Molecular Electro-Optics (ed. Krause, S.), NATO Advanced Study Institute Series, Series B, Physics, vol. 64. New York and London: Plenum Press.Google Scholar
Boeckel, G., Gengling, J. C., Weill, G. & Benoit, H. (1962). Etude par effet Kerr du poly-L-glutamate de benzyle en solution. J. Chim. phys. 59, 9991006.CrossRefGoogle Scholar
Borah, B., Cohen, J. S. & Bax, A. (1985). Conformation of double-stranded polydeoxynucleotides in solution by proton two-dimensional nuclear Overhauser enhancement spectroscopy. Biopolymers 24, 747765.CrossRefGoogle ScholarPubMed
Borochov, N., Eisenberg, J. & Kam, Z. (1981). Dependence of DNA conformation on the concentration of salt. Biopolymers 20, 231235.CrossRefGoogle ScholarPubMed
Brahms, J. & Mommaerts, W. F. H. M. (1964). A study of conformation of nucleic acids in solution by means of circular dichroism. J. molec. Biol. 10, 2841.CrossRefGoogle ScholarPubMed
Broersma, S. (1960). Rotational Diffusion constant of a cylindrical particle. J. chem. Phys. 32, 16261631.CrossRefGoogle Scholar
Broersma, S. (1981). Viscose force and torque constants for a cylinder. J. chem. Phys. 74, 69896990.CrossRefGoogle Scholar
Cairney, K. L. & Harrington, R. E. (1982). Flow birefringence of T7 phage DNA: dependence on salt concentration. Biopolymers 21, 933939.CrossRefGoogle ScholarPubMed
Cartinaud, R. & Bernengo, J. C. (1985). Electric birefringence study of rabbit skeletal myosin subfragments, HMM, LMM and rod in solution. Biophys. J. 48, 751763.CrossRefGoogle Scholar
Cavalieri, L. F., Rosenberg, B. H. & Rosoff, M. (1956). Flow dichroism and its application to the study of deoxyribonucleic acid structure. J. Am. chem. Soc. 78, 52355238.CrossRefGoogle Scholar
Chaires, J. B., Dattagupta, N. & Crothers, M. (1983). Binding of daunomycin to calf thymus nucleosomes. Biochemistry 22, 284292.CrossRefGoogle ScholarPubMed
Charney, E. (1978). Dependence of the electric field-induced orientation of poly(riboadenylic acid) on its polyelectrolyte properties. Macromolecules 11, 10591060.CrossRefGoogle Scholar
Charney, E. (1979). Electric-field induced orientation of polynucleotides. in electro-optics and dielectrics of Macromolecules and Colloids (ed. Jennings, B. R.), pp. 149152. New York and London: Plenum Press.CrossRefGoogle Scholar
Charney, E. (1980). The role of the ionic environment in the orientation of nucleic acids in electric fields. Biophys. Chem. 11, 157166.CrossRefGoogle ScholarPubMed
Charney, E. & Chen, H. H. (1987). The structure of A-DNA in solution. Proc. natn. Acad. Sci. USA 84, 15461549.CrossRefGoogle ScholarPubMed
Charney, E., Chen, H. H., Henry, E. R. & Rau, D. C. (1986). Structural information from electric dichroism measurements of DNA and alternating GC nucleic acids in solution: the question of base tilt. Biopolymers 25, 885904.CrossRefGoogle ScholarPubMed
Charney, E. & Halford, R. S. (1958). Dispersion of the electro-optic Kerr effect in the infrared region. J. chem. Phys. 29, 221228.CrossRefGoogle Scholar
Charney, E. & Milstien, J. B. (1978). Electric dichroism of poly (riboadenylic acid). Biopolymers 17, 16291655.CrossRefGoogle Scholar
Charney, E., Milstien, J. B. & Yamaoka, K. (1970). Electric dichroism studies. Poly γ-benzylglutamate and poly-β-benzylaspartate. J. Am. chem. Soc. 92, 26572664.CrossRefGoogle Scholar
Charney, E. & Yamaoka, K. Y. (1971). Electric dichroism of DNA in solution. Proceedings of the XIIIth International Congress of Pure and Applied Chemistry, vol. 1, 252255.Google Scholar
Charney, E. & Yamaoka, K. (1982). Electric dichroism of deoxyribonucleic acid in aqueous solutions: Electric field dependence. Biochemistry 21, 834842.CrossRefGoogle ScholarPubMed
Charney, E., Yamaoka, K. & Manning, G. S. (1980). Ionic strength and counterion repulsion as factors in the behavior of polyions in orienting electric fields. Biophys. Chem. 11, 167172.CrossRefGoogle ScholarPubMed
Chen, H. H. & Charney, E. (1980). Electric dichroism and birefringence of poly (ribocytidylic acid). I. Optical properties and stability. Biopolymers 19, 21232132.CrossRefGoogle Scholar
Chen, H. H., Charney, E. & Rau, D. C. (1982). Length changes in solution accompanying the B-Z transition of poly (dG-m5dC) induced by CO(NH3)63+. Nucl. Acids Res. 10, 35613571.CrossRefGoogle ScholarPubMed
Chen, H. H., Rau, D. C. & Charney, E. (1983). The flexibility of alternating dA-dT sequences. J. Biotnol. Struc. & Dynamics 2, 709719.CrossRefGoogle Scholar
Chou, C. H. & Thomas, G. I. Jr., (1977). Raman spectral studies of nucleic acids. XVI. Structures of polyribocytidylic acid in aqueous solution. Biopolymers 16, 765789.CrossRefGoogle ScholarPubMed
Crothers, D. M., Dattagupta, N., Hogan, M., Klevan, L. & Lee, K. S. (1978). Transient electric dichroism studies of nucleosomal particles. Biochemistry 17, 45254533.CrossRefGoogle ScholarPubMed
De La Torre, J. G. & Bloomfield, V. (1981). Hydrodynamic properties of complex, rigid biological macromolecules. Theory and applications. Q. Rev. Biophys. 14, 81139.CrossRefGoogle Scholar
Dickerson, R. E. (1983). Base sequence and helix structure variation in B and A DNA. J. molec. Biol. 166, 419441.CrossRefGoogle Scholar
Dickerson, R. E. & Drew, H. R. (1981). Structure of a B-DNA dodecamer. II. Influence of base sequence on helix structure. J. molec. Biol. 149, 761785.CrossRefGoogle ScholarPubMed
Dieckmann, S., Hillen, W., Jung, M., Wells, R. D. & Porschke, D. (1982 a). Electric properties and structure of DNA restriction fragments from measurements of the electric dichroism. Biophys. Chem. 15, 157167.CrossRefGoogle Scholar
Dieckmann, S., Hillen, W., Morgenmeyer, B., Wells, R. D. & Porschke, D. (1982 b). Orientation relaxation of DNA restriction fragments and the internal mobility of the double helix. Biophys. Chem. 15, 263270.CrossRefGoogle Scholar
Ding, D. & Allen, F. S. (1980). Electric dichroism and sedimentation velocity studies of DNA-Hg(II) and DNA-Ag(I) complexes. Biochim. biophys. Acta 610, 6471.CrossRefGoogle Scholar
Ding, D.-W., Rill, R. & Van Holde, K. E. (1972). The dichroism of DNA in electric fields. Biopolymers 11, 21092124.CrossRefGoogle ScholarPubMed
Dougherty, A. M., Causley, G. C. & Johnson, W. C. Jr (1983). Flow dichroism evidence for tilting of the bases when DNA is in solution. Proc. natn. Acad. Sci. U.S.A. 80, 21932195.CrossRefGoogle ScholarPubMed
Drew, H., Takano, T., Tanaka, S., Itakura, H. & Dickerson, R. E. (1980). High salt d(CpGpCpG), a left-handed Z'DNA double helix. Nature 286, 567573.CrossRefGoogle Scholar
Dvorkin, G. A. (1960). Electric dichroism of deoxyribonucleic acid solutions. Dokl. Akad. Nauk. SSSR 135, 739742.Google Scholar
Eden, D., Gebhard, M. S., Haleem, M. & Szabo, A. (1986). Abstracts in Biophys. J. 49, 300a.Google Scholar
Edmondson, S. P. & Johnson, W. C. Jr, (1985). Base tilt of DNA in various conformations from flow linear dichroism. Biochemistry 24, 48024806.CrossRefGoogle ScholarPubMed
Elias, J. G. & Eden, D. (1981 a). Transient electric birefringence study of the length and stiffness of short DNA restriction fragments. Biopolymers 20, 23692380.CrossRefGoogle Scholar
Elias, J. G. & Eden, D. (1981 b). Reversing electric field transient birefringence study of the flexibility of DNA restriction fragments. Biophys. J. 33, 221 A.Google Scholar
Elias, J. G. & Eden, D. (1981 c). Transient electric birefringence study of the persistence length and electric polarizability of restriction fragments of DNA. Macromolecules 14, 410419.CrossRefGoogle Scholar
Errara, J., Overbeck, Th. G. & Sack, H. (1935). Dispersion of the Kerr effect of colloidal solutions. J. Chim. phys. 32, 681.Google Scholar
Felsenfeld, G. & McGhee, J. D. (1986). Structure of the 30 nm fiber. Cell 44, 375377.CrossRefGoogle Scholar
Fixman, M. (1979). The Posson-Boltzmann equation and its application to polyelectrolytes. J. chem. Phys. 70, 49955004.CrossRefGoogle Scholar
Fixman, M. (1980). Charged macromolecules in external fields. 1. The sphere. J. chem. Phys. 72, 51775186.CrossRefGoogle Scholar
Flory, P. J. & Jernigan, R. L. (1968). Kerr effect in polymer chains. J. chem. Phys. 48, 38233824.CrossRefGoogle Scholar
Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. (1982). Reversible bending and helix geometry in a B-DNA dodecamer CGCGAATTBrCGCG. J. biol. Chem. 257, 1468614707.CrossRefGoogle Scholar
Fredericq, E. & Houssier, C. (1973). Electric Dichroism and Birefringence. Oxford: Oxford University Press.Google Scholar
Fuchs, R. P. P., Le Fevre, J. F., Pouyet, J. & Darme, M. P. (1976). Comparative orientation of the fluorene residue in native DNA modified by N-acetoxy-N-2-acetylaminofluorene and two 7-halogeno derivatives. Biochemistry 15, 33473351.CrossRefGoogle ScholarPubMed
Geacintov, N. E., Gagliano, A., Ivanivic, V. & Weinstein, I. B. (1978). Electric linear dichroism study on the orientation of benzo[a]pyrene-7, 8-dihidriol 9, 10-oxide covalently bound to DNA. Biochemistry 17, 52565262.CrossRefGoogle Scholar
Godfrey, J. E. & Eisenberg, J. (1976). The flexibility of low molecular weight double-stranded DNA as a function of length. Biophys. Chem. 5, 301318.CrossRefGoogle ScholarPubMed
Golub, E. I. (1964). The method of estimation of chain macromolecule rigidity. Biopolymers 2, 113121.CrossRefGoogle Scholar
Hagerman, P. J. (1981). Investigation of flexibility of DNA using transient electric birefringence. Biopolymers 20, 15031535.CrossRefGoogle ScholarPubMed
Hagerman, P. J. (1984). Evidence of the existence of stable curvature of DNA in solution. Proc. natn. Acad. Sci. U.S.A. 81, 46324636.CrossRefGoogle ScholarPubMed
Hagerman, P. J. & Zimm, B. H. (1981). Monte Carlo approach to the analysis of the rotational diffusion of wormlike chains. Biopolymers 20, 14811502.CrossRefGoogle Scholar
Harrington, R. E. (1970). Optico-hydrodynamic properties of high molecular weight DNA from steady-state flow birefringence and viscosity at extremely low viscosity gradients. Biopolymers 9, 159193.CrossRefGoogle Scholar
Harrington, R. E. (1980). Intrinsic viscosity of DNA: salt dependence and current polyelectrolyte theory. Biopolymers 19, 449451.CrossRefGoogle ScholarPubMed
Hearst, J. (1963). Rotatory diffusion coefficients of stiff-chain macromolecules. J. chem. Phys. 38, 10621065.CrossRefGoogle Scholar
Highsmith, S. & Eden, D. (1985). Transient electric birefringence characterization of heavy meromyosin. Biochemistry 24, 49174924.CrossRefGoogle ScholarPubMed
Highsmith, S. & Eden, D. (1986). Myosin subfragment 1 has tertiary structural domains. Biochemistry 25, 22372242.CrossRefGoogle ScholarPubMed
Highsmith, S., Kretzochmarr, K. M., O'Konski, C. T. & Morales, M. F. (1977). Flexibility of myosin rod, light meromyosin and myosin subfragment-2 in solution. Proc. natn. Acad. Sci. U.S.A. 74, 49864990.CrossRefGoogle ScholarPubMed
Hofrichter, J. & Eaton, W. A. (1976). Linear dichroism of biological chromophores. A. Rev. Biophys. Bioengng. 5, 511560.CrossRefGoogle ScholarPubMed
Hogan, M., Dattagupta, N. & Crothers, D. M. (1978). Transient electric dichroism of rod-like DNA molecules. Proc. natn. Acad. Sci. U.S.A. 75, 195199.CrossRefGoogle ScholarPubMed
Hogan, M., Dattagupta, N. & Crothers, D. M. (1979). Transient electric dichroism studies of the structure of DNA complex with intercalated drugs. Biochemistry 18, 280288.CrossRefGoogle ScholarPubMed
Holcomb, D. N. & Tinoco, I. (1963). Electrical birefringence at high fields. J. phys. Chem. 67, 26912698.CrossRefGoogle Scholar
Holcomb, D. N. & Tinoco, I. (1965). Conformation of polyriboadenylic acids: pH and temperature dependence. Biopolymers 3, 121133.CrossRefGoogle Scholar
Houssier, C. (1966). Thesis, University of Liège, Belgium.Google Scholar
Houssier, C. (1981). Investigating nucleic acids, nucleoproteins, polynucleotides, and their interactions with small ligands by electro-optic methods. In Molecular Electro-Optics (ed. Krause, S.), NATO Advanced Study Institute Series, Series B, Physics, vol. 64, pp. 363398. New York and London: Plenum Press.CrossRefGoogle Scholar
Houssier, C. & Fredericq, E. (1964). Electro-optic effects on nucleic acids and nucleoproteins. Biochim. biophys. Acta 88, 450452.Google Scholar
Houssier, C. & Fredericq, E. (1966). Electro-optic properties of nucleic acids and nucleoproteins. I. Study of the gel-forming deoxyribonucleo histone. II. Study of the deoxyribonucleo histone–proflavine complexes. Biochim. biophys. Acta 120, 113130, 434–447.CrossRefGoogle Scholar
Houssier, C., Lasters, I., Muyldermans, S. & Wyns, L. (1981 a). Influence of histones 41/45 on the DNA coiling in the nucleosome-electric dichroism and birefringence study. Int. J. Biol. Macromol. 3, 370376.CrossRefGoogle Scholar
Houssier, C., Lasters, I., Muyldermans, S. & Wyns, L. (1981 b). The structural organization of dinucleosomes and oligonucleosomes. Electric dichroism and birefringence study. Nucl. Acids Res. 9, 57635784.CrossRefGoogle ScholarPubMed
Houssier, C. & O'Konski, C. T. (1981). Electro-optical instrumentation systems with their data acquisition and treatment. In Molecular Electro-Optics (ed. Krause, S.), NATO Advanced Study Institute Series, Series B, Physics, vol. 64, pp. 309339. New York and London: Plenum Press.CrossRefGoogle Scholar
Hug, W. & Tinoco, I. Jr, (1973). Electronic spectra of nucleic acid bases. I. Interpretation of the in-plane spectra with the aid of all valence electron MO-CI calculations. J. Am. chem. Soc. 95, 28032813.CrossRefGoogle ScholarPubMed
Hvidt, S., Chang, T. & Yu, H. (1984). Rigidity of myosin and myosin rod by electric birefringence. Biopolymers 23, 12831294.CrossRefGoogle ScholarPubMed
Itzhaki, R. F. (1966). Structure and properties of rat thymus deoxynucleoprotein. II. Effects of enzymes and other agents on electric birefringence properties. Proc. R. Soc. B 164, 411427.Google Scholar
Ivanov, V. I., Mlnchenkova, L. E., Schyolkina, A. K. & Poletayev, A. I. (1973). Different conformations of double stranded nucleic acids in solution as revealed by circular dichroism. Biopolymers 12, 89100.CrossRefGoogle ScholarPubMed
Jakabhazy, S. Z. & Fleming, W. (1966). Elecro-optical studies of conformation and interaction of polynucleotides. Biopolymers 4, 793813.CrossRefGoogle ScholarPubMed
Jennings, B. R. (ed.) (1979). Electro-Optics and Dielectrics of Macro-molecules and Colloids. New York and London: Plenum Press.CrossRefGoogle Scholar
Jennings, B. R. (1981). Introduction to modern electro-optics. In Molecular Electro-optics, (ed. Krause, S.), NATO Advanced Study Institute Series, Series B, Physics, vol. 64, pp. 2759. New York and London: Plenum Press.CrossRefGoogle Scholar
Jernigan, R. & Miyazawa, S. (1981). Kerr effect of flexible macromolecules. In Molecular Electro-Optics, (ed. Krause, S.), NATO Advanced Study Institute Series, Series B, Physics, vol. 64, pp. 163179. New York and London: Plenum Press.CrossRefGoogle Scholar
Jernigan, R. L. & Thompson, D. S. (1976). Flexible polymers. In Molecular Electro-Optics, part I, (ed. O'Konski, C. T.), pp. 159206. New York and Basel: Marcel Dekker.Google Scholar
Jolly, D. & Eisenberg, H. (1976). Photon correlation spectroscopy. Total intensity light scattering with laser radiation, and hydrodynamic studies of a well-fractionated DNA sample. Biopolymers 15, 6195.CrossRefGoogle ScholarPubMed
Joubert, F. J., Lotan, N. & Scheraga, H. A. (1969). A nuclear magnetic resonance study of helix-coil transition of poly-L-lysine in methanol-water solvents. Physiol. Chem. & Phys. 1, 348354.Google Scholar
Kennard, O. (1984). DNA from A-Z. A survey of oligonucleotide structures. Pure appl. Chem. 56, 9891004.CrossRefGoogle Scholar
Kikuchi, K. (1984). Field strength dependence and transient behaviour of the electric birefringence of poly (L-lysine hydrobromide) in 98% aqueous methanol. J. phys. Chem. 88, 63286332.CrossRefGoogle Scholar
Kikuchi, K. & Yoshioka, K. (1976) Effect of saturation of the ion atmosphere polarization on the orientation factor of the electric birefringence of Rodlike polyelectrolytes. Biopolyers 15, 583587.CrossRefGoogle Scholar
Kingsbury, E. F. (1930). Kerr electrostatic effect. Rev. scient. Instrum. 1, 2232.CrossRefGoogle Scholar
Kirkwood, J. G. & Riseman, J. (1948). The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. chem Phys. 16, 565579.CrossRefGoogle Scholar
Kobayasi, S. (1968). Decay processes of the electric birefringence in polydispersed systems. Biopolymers 6, 14911493.CrossRefGoogle Scholar
Kobayasi, S. & Ikagami, A. (1975). Electric birefringence studies on polyglutamic acid. Biopolymers 14, 543553.CrossRefGoogle ScholarPubMed
Koopmans, G., De Boer, J. & Greve, J. (1979). Transient electric birefringence of macromolecular solutions at reversing fields of arbitrary strength and duration. In Electro-optics and Dielectrics of Macromolecules and Colloids (ed. Jennings, B. R.), pp. 149152. New York and London: Plenum Press.Google Scholar
Kratky, O. & Porod, G. (1949). X-ray investigation of chain molecules in solution. Recl Trav. chim. 68, 11061122.CrossRefGoogle Scholar
Krause, S., (ed.) (1981). Molecular Electro-optics. NATO Advanced Study Institute Series, Series B, Physics, vol. 64. New York and London: Plenum Press.CrossRefGoogle Scholar
Krause, S. & O'Konski, C. T. (1963). Electric properties of macromolecules. Biopolymers 1, 503515.CrossRefGoogle Scholar
Kuhn, W., Duhrkop, H. & Martin, H, (1939). Z. physiol. Chem. Abt B 45, 121.Google Scholar
Kuznicki, J., Cote, G. P., Bowers, B. & Korn, E. D. (1985). Filament formation and actin activated ATPase activity are abolished by protealytic removal of a mall peptide from the tip of the tail of the heavy chain of acanthamoebae myosin. II. J. biol. Chem. 260, 19671972.CrossRefGoogle Scholar
Kwiatkowski, J. S. (1968). Electronic structure and spectra of organic molecules. IV. Theor. chim. Acta 10, 4764.CrossRefGoogle Scholar
Langridge, R., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. and Hamilton, L. D. (1960). The molecular configuration of deoxyribonucleic acid. J. molec. Biol. 2, 1937.CrossRefGoogle Scholar
Le Bret, M. (1982). Electrostatic contribution to the persistence length of a polyelectrolyte. J. chem. phys. 76, 62436255.CrossRefGoogle Scholar
Lee, C. H. & Charney, E. (1982). Solution conformation of DNA. J. molec. Biol. 161, 289303.CrossRefGoogle ScholarPubMed
Lee, K. S. & Crothers, D. M. (1982). Influence of ionic strength on the dichroism properties of polynucleosomal fibers. Biopolymers 21, 101116.CrossRefGoogle ScholarPubMed
Lee, K. S., Mandelkern, M. & Crothers, D. M. (1981). Solution structure studies of chromatin fibers. Biochemistry 20, 14381445.CrossRefGoogle ScholarPubMed
Leng, M. & Felsenfeld, G. (1966). A study of polyadenylic acid at neutral pH. J. molec. Biol. 15, 455460.CrossRefGoogle Scholar
Leslie, A. G. W., Arnott, S., Chandrasekharan, R. & Ratliff, R. L. (1980). Polymorphism of DNA double helices. J. molec. Biol. 143, 4972.CrossRefGoogle ScholarPubMed
Levitt, M. (1978). How many base-pairs per turn does DNA have in solution and in chromatin? Some theoretical calculations. Proc. natn. Acad. Sci. U.S.A. 75, 640644.CrossRefGoogle ScholarPubMed
Lewis, R. J., Huang, J. H. & Pecora, R. (1985). Rotational and translational motion of supercoiled plasmids in solution. Macromolecules 18, 944948.CrossRefGoogle Scholar
Lewis, R. J., Pecora, R. & Eden, D. (1986). Transient electric birefringence measurements of the rotational and internal bending modes in monodisperse DNA fragments. Macromolecules 19, 134139.CrossRefGoogle Scholar
Luzzati, V., Mathis, A., Mason, F. & Witz, J. (1964). Structure transitions observed in DNA and poly A in solution as a function of temperature and pH. J. molec. Biol. 10, 2841.CrossRefGoogle Scholar
Maestre, M. F. (1978). Electro-optics of nucleoproteins and viruses. In Molecular Electro-Optics (ed. O'Konski, C. T.) pp. 713741. New York: Marcel Dekker.Google Scholar
Mandel, M. (1961). Electric polarization of rodlike charged macromolecules. Molec. Phys. 4, 489496.CrossRefGoogle Scholar
Mandel, M. (1977). Dielectric properties of charged linear macromolecules with particular reference to DNA. Ann. N. Y. Acad. Sci 203, 7487.CrossRefGoogle Scholar
Mandel, M. (1981). Polyelectrolytes: A survey in Molecular Electro-Optics (ed. Krause, S.), NATO Advanced Study Institute Series, Series B, Physics, vol. 64, pp. 285308. New York and London: Plenum Press.CrossRefGoogle Scholar
Mandel, M. & Odijk, T. (1984). Dielectric properties of polyelectrolyte solutions. A. Rev. phys. Chem 35, 75108.CrossRefGoogle Scholar
Mandel, M. & Shouten, J. (1980). Ionic strength dependence of the average dimension of low molecular weight DNA. Macromolecules 13, 12471251.CrossRefGoogle Scholar
Manning, G. S. (1977). Limiting laws and counterion condensation in polyelectrolyte solutions. IV. The approach to the limit and the extraordinary stability of the charge fraction. Biophys. Chem. 7, 95102.CrossRefGoogle Scholar
Manning, G. S. (1978 a). Limiting laws and counterion condensation in polyelectrolyte solution. V. Further development of the chemical model. Biophys. Chem. 9, 6570.CrossRefGoogle ScholarPubMed
Manning, G. S. (1978 b). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179246.CrossRefGoogle Scholar
Manning, G. S. (1983). A unified model for bending and breathing fluctuations in DNA. In Structural Dynamics of Nucleic Acids and Proteins (ed. Clementi, E. and Sarma, R. H.), pp. 289300. Guilderland, N.Y.: Adenine Press.Google Scholar
Marion, C., Martinage, A., Tiraid, A., Roux, B., Daune, M. & Mazen, A. (1985). Histone phosphorylation in native chromatin induces local structural changes as probed by electric birefringence. J. molec. Biol. 186, 367379.CrossRefGoogle ScholarPubMed
Marion, C., Perrot, B., Roux, B. & Bernengo, J. C. (1984). Study of electro-optical properties of DNA by low-field electric birefringence. 2. Orientation and relaxation mechanisms. Makromol. Chem. 185, 16471664.CrossRefGoogle Scholar
Matsuda, K. (1983). Electro-optical and hydrodynamic properties of calf thymus DNA in solutions as studied by electric birefringence and electric dichroism methods. J. Sci. Hiroshima Univ. Ser. A. 47, 4165.Google Scholar
Matsuda, K. & Yamaoka, K. (1982). Electric birefringence and electric dichroism of sonicated DNA in aqueous solution with various additives. Electro-optical and hydrodynamic properties. Bull. chem. Soc, Japan 55, 17271733.CrossRefGoogle Scholar
Matsumoto, M., Watanabe, H. & Yoshioka, K. (1967). Sci. Pap. Coll. Gen. Educ, Univ. of Tokyo 17, 173202.Google Scholar
Matsumoto, M., Watanabe, H. & Yoshioka, K. (1970). Electric and hydrodynamic properties of polypeptides in solution. II. Conformation of poly(L-glutamic acid) in various organic solvents. Biopolymers 9, 13071317.CrossRefGoogle ScholarPubMed
Matsuoka, Y. & Norden, B. (1983). Linear dichroism studies of nucleic acids. III. Reduced dichroism curves of DNA in ethanol-water and in poly(vinyl alcohol) films. Biopolymers 22, 17311746.CrossRefGoogle ScholarPubMed
McGhee, J. D. & Felsenfeld, G. (1980). Nucleosome structure. A. Rev. Biochem. 49, 11151156.CrossRefGoogle ScholarPubMed
McGhee, J. D., Nickol, J. M., Felsenfeld, G. & Rau, D. C. (1983 a). Histone hyperacetylation has little effect on the higher order folding of chromatin. Nucl. Acids Res. 11, 40654075.CrossRefGoogle ScholarPubMed
McGhee, J. D., Nickol, J. M., Felsenfeld, G. & Rau, D. C. (1983 b). Higher order structure of chromatin: orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell 33, 831841.CrossRefGoogle ScholarPubMed
McGhee, J. D., Rau, D. C., Charney, E. & Felsenfeld, G. (1980). Orientation of the nucleosome within the higher order structure of chromatin. Cell 22, 8796.CrossRefGoogle ScholarPubMed
McGhee, J. D., Rau, D. C. & Felsenfeld, G. (1982). The high mobility group proteins, HMG 14 and 17, do not prevent the formation of chromatin higher order structure. Nucl. Acids Research. 10, 20072016.CrossRefGoogle Scholar
McTague, J.Gibbs, J. H. (1966). Electric polarization of solutions of rodlike polyelectrolytes. J. chem. Phys. 44, 42954301.CrossRefGoogle Scholar
Milstien, J. B. & Charney, E. (1969). The rigidity of polymer molecules in solution electric dichroism of poly (butyl isocyanates). Macromolecules 2, 678679.CrossRefGoogle Scholar
Mitra, C. K.,Sarma, M. H.& Sarma, R. H. (1981). Plasticity of the DNA Double helix. J. Am. chem. Soc. 103, 67276737.CrossRefGoogle Scholar
Mitra, S., Sen, D. & Crothers, D. M. (1984). Orientation of nucleosomes and linker DNA in calf thymus chromatin determined by photochemical dichroism. Nature 308, 247250.CrossRefGoogle ScholarPubMed
Moffitt, W. (1956). Optical rotatory dispersion of helical polymers. J. chem. Phys. 25, 467478.CrossRefGoogle Scholar
Morris, V. J., Brownsey, G. J. & Jennings, B. R. (1979 a). Length dependence of the anisotropy of the interfacial electric polarizability of rods. Molec. Phys. 37, 303315.CrossRefGoogle Scholar
Morris, V. J., Brownsey, G. J. & Jennings, B. R. (1979 b). Length dependence of the ionic contribution to the anisotropy of the electrical polarizability for rigid rods. In Electro-Optics and dielectrics of Macromolecules and Colloids (ed. Jennings, B. R.. pp. 311320. New York and London: Plenum Press.CrossRefGoogle Scholar
Neumann, E. & Katchalsky, A. (1972). Long-lived conformational changes induced by electric impulses in biopolymers. Proc. natn. Acad. Sci., U.S.A. 69, 993997.CrossRefGoogle ScholarPubMed
O'Konski, C. T. & Haltner, A. J. (1956). Characterization of the monomer and dimer of tobacco-mosaic virus by transient electric birefringence. J. Am. chem. Soc. 78, 36043610.CrossRefGoogle Scholar
O'Konski, C. T. & Haltner, A. J. (1957). Electric properties of macromolecules. I. A study of electric polarization in polyelectrolyte solutions by means of electric birefringence. J. Am. chem. Soc. 79, 56345639.CrossRefGoogle Scholar
O'Konski, C. T. & Krause, S. (1970). Theory of the Kerr constant of rigid conducting dipolar macromolecules. J. phys. Chem. 74, 32433250.CrossRefGoogle Scholar
O'Konski, C. T., Yoshioka, K. & Orttung, W. H. (1959). Electric properties of macromolecules. IV. Determination of electrical and optical parameters from saturation of electric birefringence in solution. J. phys. Chem. 63, 15581565.CrossRefGoogle Scholar
O'Konski, C. T. & Zimm, B. H. (1950), New methods for studying electrical orientation and relaxation effects in aqueous colloids: preliminary results with tobacco mosaic virus. Science 111, 113116.CrossRefGoogle ScholarPubMed
Ohlenbusch, H. H. E. W. (1966). Ph.D. Thesis. California Institute of Technology, Pasadena, California, U.S.A.Google Scholar
Olson, W. K. (1975). Configuration-dependent properties of randomly coiling polynucleotide chains. I. A comparison of theoretical energy estimates. Biopolymers 14, 17751795.CrossRefGoogle Scholar
Olson, W. K. (1979). The flexible DNA double helix. I. Average dimensions and distribution functions. Biopolymers 18, 12131233.CrossRefGoogle ScholarPubMed
Olson, W. K. (1982). Computational studies of polynucleotide flexibility. Biopolymers 10, 777787.Google ScholarPubMed
Oosawa, F. (1970). Counterion fluctuation and dielectric dispersion in linear polyelectrolytes. Biopolymers 9, 677688.CrossRefGoogle Scholar
Oosawa, F. (1971). Polyelectrolytes. New York: Marcel Dekker.Google Scholar
Paulson, C. M. Jr, (1976). Electric dichroism of macromolecules. In Molecular Electro-Optics, part 1. (ed. O'Konski, C. T.), pp. 243373. New York and Basel: Marcel Dekker.Google Scholar
Pohl, F. M. & Jovin, T. M. (1972). Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly d(G-C). J. molec. Biol. 67, 375396.CrossRefGoogle Scholar
Porod, G. (1949). Zusammenhang zwischen mettelerem Endpunktabstand and Kettenlenges bei Fadenmolecular. Chem. 80, 251255.Google Scholar
Porschke, D. (1980). Structure and dynamics of a tryptophane peptides-polynucleotide complex. Nucl. Acid Res. 8, 15911612.CrossRefGoogle ScholarPubMed
Porschke, D. (1985). The mechanism of ion polarization along DNA double helices. Biophys. Chem. 22, 237247.CrossRefGoogle ScholarPubMed
Rau, D. C. & Charney, E. (1981). Polarization of the ion atmosphere of a charged cylinder. Biophys. Chem. 14, 19.CrossRefGoogle ScholarPubMed
Rau, D. C. & Charney, E. (1983 a). Electric dichroism of DNA. Influence of the ionic environment on the electric polarizability. Biophys. Chem. 17, 3550.CrossRefGoogle ScholarPubMed
Rau, D. C. & Charney, E. (1983 b). High field saturation properties of the ion atmosphere polarization surrounding a rigid, immobile rod. Macromolecules 16, 16531661.CrossRefGoogle Scholar
Rau, D. C., Gellert, M., Thoma, F. & Maxwell, A. (1987) The structure of the DNA gyrase-DNA complex as revealed by transient electric dichroism. J. molec. Biol. (In the press.)CrossRefGoogle Scholar
Record, M. T. Jr, Woodbury, C. P. & Lohman, T. M. (1976). Na+ effects on transitions of DNA and polynucleotides of variable linear charge density. Biopolymers 15, 893915.CrossRefGoogle ScholarPubMed
Riddeford, C. L. & Jennings, B. R. (1967). Kerr effect study of the aqueous solutions of three globular proteins. Biopolymers 5, 757771.CrossRefGoogle Scholar
Rill, R. (1972). The linear dichroism of oriented helical and superhelical polymers. Biopolymers 11, 19291941.CrossRefGoogle ScholarPubMed
Rizzo, V. & Schellman, J. A. (1981). Flow dichroism of T7 DNA as a function of salt concentration. Biopolymers 20, 21432163.CrossRefGoogle ScholarPubMed
Roitman, D. B. & Zimm, B. H. (1984 a). An elastic hinge model for dynamics of stiff chains. I. Visco-elastic properties. J. chem. Phys. 81, 63336347.CrossRefGoogle Scholar
Roitman, D. B. & Zimm, B. H. (1984 b). An elastic hinge model for dynamics of stiff chains. II. Transient electro-optical properties. J. chem. Phys. 81, 63486356.CrossRefGoogle Scholar
Roitman, D. B. & Zimm, B. H. (1984 c). An elastic hinge model for dynamics of stiff chains. III. Visco-elastic and Kerr-effect behaviour of bent molecules. J. chem. Phys. 81, 63566360.CrossRefGoogle Scholar
Rosato, V. & Williams, G. (1981). Dynamic Kerr effect and dielectric relaxation of polarizable dipolar molecules. Transient response including linear and non-linear effects. J. chem. Soc. Faraday Trans. (2), 77, 17671778.CrossRefGoogle Scholar
Schellman, J. (1980). The flexibility of DNA. I. Thermal fluctuations. Biophys. Chem. 11, 321328.CrossRefGoogle ScholarPubMed
Schildkraudt, C. & Lifson, S. (1965). Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3, 195208.CrossRefGoogle Scholar
Schlessinger, F. B., Dattagupta, N. & Crothers, D. M. (1982). Unfolding of 175-base-pair nucleosomes. Biochemistry 21, 664669.CrossRefGoogle ScholarPubMed
Sen, D. & Crothers, D. M. (1986). Condensation of chromatin: role of multivalentions. Biochemistry 25, 14951503.CrossRefGoogle Scholar
Sen, D., Mitra, S. & Crothers, D. M. (1986). Higher order structure of chromatin: evidence from photochemically detected linear dichroism. Biochemistry 25, 34413447.CrossRefGoogle ScholarPubMed
Shah, M. J. (1963). Electric birefringence of bentonite. II. An extenstion of saturation of birefringence theory. J. phys. Chem. 67, 22152219.CrossRefGoogle Scholar
Shakked, S., Rabinovich, D., Kennard, O., Cruse, W. B. T., Salisbury, S. A. & Viswamitra, M. A. (1981). Crystalline A-DNA: the X-ray analysis of the fragment d(G-G-T-A-T-A-C-C). Proc. R. Soc. A213, 479487.Google Scholar
Shirai, M. (1976). Electric birefringence relaxation of circular DNA. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 26, 9194.Google Scholar
Shairai, M. (1979). The stabilized induced dipole in solutions of polynucleotides. In Electro-Optics and Dielectrics of Macromolecules and Colloids (Ed. Jennings, B. J.), pp. 153159. New York and London: Plenum Press.CrossRefGoogle Scholar
Simpson, R. T. (1978). Structure of the chromatosome, a particle containing 160 bp of DNA and all the histones. Biochemistry 17, 55145531.CrossRefGoogle Scholar
Simpson, R. T. & Safford, D. W. (1983). Structural features of a phased nucleosomal core particle. Proc. natn. Acad. Sci. U.S.A. 80, 5155.CrossRefGoogle Scholar
Slater, G. W. & Noolandi, J. (1985). Prediction of chain elongation in the reptation theory of DNA gel electrophoresis. Biopolymers 24, 21812184.CrossRefGoogle Scholar
Soda, T. & Yoshiska, K. (1965). Spectroscopic and electro-optical study on interaction of crystal violet and malachite green with polyelectrolyte. Nippon Kagaku Zasshi 86, 10191025.CrossRefGoogle Scholar
Sokorov, S. & Weill, G. (1979). Polarized fluorescence in an electric field. Comparison with other electro-optical effects for rodlike segments of DNA and the problem of the saturation of the induced moment. Biophys. Chem. 10, 161171.CrossRefGoogle Scholar
Soumpasis, D. M. (1978). Debye-Huckel theory of model polyelectrolytes. J. chem. Phys. 69, 31903196.CrossRefGoogle Scholar
Spach, G. (1959). Infrared dichroism of solutions of macromolecules oriented by an electrif field. Compt. rend. 249, 667668.Google Scholar
Stellwagen, N. C. (1967). Ph.D. Thesis, University of California, Berkeley, Calif., U.S.A.Google Scholar
Stellwagen, N. C. (1978). Electro-optics of polynucleotides and nucleic acids. In Molecular Electro-Optics, part 2 (ed. O'Konski, C. T.). New York and Basel: Marcel Dekker.Google Scholar
Stellwagen, N. C. (1981). Electric birefringence of restriction enzyme fragments of DNA. Optical factor and electric polarizability as a function of molecular weight. Biopolymers 20, 399434.CrossRefGoogle ScholarPubMed
Stigter, D. (1978). Electrophoresis of highly charged colloidal cylinders in univalent salt solutions. 2. Random orientation in external field and application to polyelectrolytes. J. phys. Chem. 82, 14241429.CrossRefGoogle Scholar
Stockmayer, W. H. & Bauer, M. E. (1964). Low-frequency electrical response of flexible chain molecules. J. Am. chem. Soc. 86, 34853489.CrossRefGoogle Scholar
Stoylov, S. P. (1981). The rotational diffusion function in an electric field. In Molecular Electro-Optics, (ed. Krause, S.), NATO Advanced Study Institute Series, Series B, Physics, vol. 64, pp. 105117. New York and London: Plenum Press.CrossRefGoogle Scholar
Suau, P., Kneale, G. G., Braddock, G. W., Baldwin, J. P. & Bradbury, E. M. (1979). A low resolution model for the chromatin core particle by neutron scattering. Nucl. Acids Res. 4, 37693786.CrossRefGoogle Scholar
Szabo, A., Haleem, M. & Eden, D. (1986). The transient electric birefringence of rodlike polyions: coupling of rotational and counterion dynamics. (Submitted for publication - personal communication from A. Szabo.)Google Scholar
Takashima, S. (1963). Dielectric dispersion of DNA. J. molec. Biol. 7, 455467.CrossRefGoogle ScholarPubMed
Thoma, F., Koller, Th. & Klug, A. (1979). Involvement of histone Hi in the organization of the nucleosome and salt-dependent substructure of chromatin. J. cell Biol. 83, 403427.CrossRefGoogle Scholar
Tinoco, I. Jr (1957). Dynamic electrical birefringence studies of poly-γ-benzyl-L-glutamate. J. Am. chem. Soc. 79, 43364338.CrossRefGoogle Scholar
Tirado, M. M., Martinez, C. L. & De La Torre, J. G. (1984). Comparison of theories for the translation and rotational diffusion coefficients of rod-like macromolecules. Application of short DNA fragments. J. chem. Phys. 81, 20472052.CrossRefGoogle Scholar
Trifonov, E. N. (1985). Curved DNA. CRC Crit. Rev. Biochem. 19, 89106.CrossRefGoogle ScholarPubMed
Tsvetkov, V. N., Yu, V. M., Glushenkova, V. R., Grishenko, A. E., Boitsova, N. N. & Lyubinar, S. Y. (1963). Electric and dynamic birefringence of poly(γ-benzyl-L-glutamate) solutions. Vysokomolek. Soedin. 5, 453.Google Scholar
Ueda, K. (1984). Reversing-pulse electric birefringence of poly (γ-methyl L-glutamate) in hexafluoro-Lpropanol. Bull. chem. Soc. Japan 57, 27032711.CrossRefGoogle Scholar
Van Der Touw, F. & Mandel, M. (1974). Dielectric increment and dielectric dispersion of solutions containing simple charged macromolecules. Biophys. Chem. 2, 218230.CrossRefGoogle Scholar
Wang, A. H. J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., Van Boom, J. H., Van Der Marel, G. & Rich, A. (1979). Molecular nature of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680686.CrossRefGoogle ScholarPubMed
Wang, A. H. J., Quigley, G. J., Kolpak, F. J., Van Der Marel, G., Van Boom, J. H. & Rich, A. (1981). Left-handed double helical DNA. Variations in the backbonw conformation. Science 211, 171176.CrossRefGoogle ScholarPubMed
Wijmenga, S. (1984). Ph.D. Thesis, University of Leiden.Google Scholar
Wijmenga, S., Atkinson, M. & Albanesi, J. (1986). Personal communication.Google Scholar
Wijmenga, S., Van Der Touw, F. & Mandel, M. (1986). The electric birefringence relaxation of aqueous polyelectrolyte solutions observed with pulsed rectangular waves of various frequencies. Polymer Communications 26, 172175.Google Scholar
Wilson, R. W. & Shellman, J. A. (1977). The dichroism tensor of flexible molecules. Biopolymers 16, 21432165.CrossRefGoogle Scholar
Woodcock, C. L. F., Frado, L. L. Y. & Ratner, J. B. (1984). The higher order structure of chromatin: evidence for a helical ribbon arrangement. J. cell Biol. 99, 4252.CrossRefGoogle ScholarPubMed
Wu, H. M., Dattagupta, N. & Crothers, D. M. (1981). Solution structural studies of the A and Z forms of DNA. Proc. natn. Acad. Sci. USA 78, 68086811.CrossRefGoogle ScholarPubMed
Yabuki, H., Dattagupta, N. & Crothers, D. M. (1982). Orientation of nucleosomes in the thirty-nanometer chromatin fiber. Biochemistry 21, 50155020.CrossRefGoogle ScholarPubMed
Yamaoka, K. (1964). Ph.D. Thesis, University of California at Berkeley.Google Scholar
Yamaoka, K. & Charney, E. (1972). Electric dichroism studies of macromolecules in solutions. I. Theoretical considerations of electric dichroism and electrochromism. J. Am. chem. Soc. 94, 89638974.CrossRefGoogle ScholarPubMed
Yamaoka, K. & Charney, E. (1973). Electric dichroism studies of macromolecules in solutions. II. Measurements of linear dichroism and birefringence of deoxyribonucleic acid in orienting electric fields. Macromolecules 6, 6676.CrossRefGoogle ScholarPubMed
Yamaoka, K. & Fukudome, K. (1983). Effect of polydispersity of molecular length on the decay process of transient electric birefringence of rodlike macromolecules in solution. Bull. chem. Soc. Japan 56, 6065.CrossRefGoogle Scholar
Yamaoka, K., Ichibakase, T., Ueda, K. & Matsuda, K. (1980). Electric-field orientation of poly (α-L-glutamic acid) in various conformations as studied by reversingpulse-electric birefringence. J. Am. chem. Soc. 102, 51095110.CrossRefGoogle Scholar
Yamaoka, K. & Matsuda, K. (1980). Electric dipole moments of DNA in aqueous solutions as studied by the reversing-pulse electric birefringence. Macromolecules 13, 15581560.CrossRefGoogle Scholar
Yamaoka, K. & Matsuda, K. (1981). Electric dichroism study of a sonicated DNA and its complex with an acridine dye in aqueous solutions: Field-strength dependence and linear dichroic spectra. Macromolecules 14, 595601.CrossRefGoogle Scholar
Yamaoka, K. & Ueda, K. (1982). Reversing pulse electric birefringence study of helical poly (α-L-glutamic acid) in N, N-dimethylformamide with emphasis on a new data analysis for the polydisperse system. J. phys. Chem. 86, 406413.CrossRefGoogle Scholar
Yamaoka, K. & Ueda, K. (1983). Electric field-induced transient process of poly (p-styrenesulfonate) in aqueous solutions as studied by reversing-pulse electric birefringence technique. Effect of counterions and other additives. Chem. Lett. Chem. Soc. Japan 545548.Google Scholar
Yamaoka, K., Yamamoto, S. & Ueda, K. (1985). Reversing-pulse electric birefringence of non-conducting helical polypeptides in solutions. J. phys. Chem. 89, 51925197.CrossRefGoogle Scholar
Yoshioka, K. (1978). Electro-optics of polypeptides and proteins. In Molecular Electro-Optics, part 2 (ed. O'Konski, C. T.), New York and Basel: Marcel Dekker.Google Scholar
Yoshioka, K. (1983 a). Orientation function of the electric birefringence and dichroism of rodlike polyelectrolytes on the basis of the saturating dipole mechanism. J. chem. Phys. 79, 34823486.CrossRefGoogle Scholar
Yoshioka, K. (1983 b). Electric-field orientation of charged helical polypeptide in solution. Prog. Colloid Polymer Sci. 68, 122130.CrossRefGoogle Scholar
Yoshioka, K. & Kikuchi, K. (1982). Field strength dependence of the electric birefringence of charged polypeptides in aqueous alcohol solutions. Prog. Polym. Phys. Jpn 25, 675678.Google Scholar
Yoshioka, K., Kikuchi, K. & Fujimori, M. (1980). Electric birefringence of ionized polypeptides in solution and the effect of high electric fields on the helix-coil transition. Biophys. Chem. 11, 369375.CrossRefGoogle ScholarPubMed
Yoshioka, K. & Takasuki, K. (1981). Kerr effect studies of sodium poly (L-glutamate) in aqueous alcohol solutions and the mechanism of electric field orientation of charged polypeptides. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 31, 111124.Google Scholar
Yoshioka, K. & Takasuki, K. (1982). Electric field orientation of Na poly (L-glutamate) in methanol/water and ethylene glycol/water mixtures. Int. J. Biol. Macromol. 4, 123125.CrossRefGoogle Scholar
Zimm, B. H. (1948). The scattering of light and the radial distribution functions of high polymer solutions. J. chem Phys. 16, 10931098, 1099–1116.CrossRefGoogle Scholar
Zimmerman, S. (1982). The three-dimensional structure of DNA. Annu. Rev. Biochem. 51. 395427.CrossRefGoogle ScholarPubMed