Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T21:28:57.578Z Has data issue: false hasContentIssue false

Integrated gas chromatography-mass spectrometry

Published online by Cambridge University Press:  17 March 2009

Ragnar Ryhage
Affiliation:
Laboratory for Mass Spectrometry, Karolinska Institutet, 104 01 Stockholm, Sweden

Extract

Mass spectrometric analysis of organic compounds was in the early 1950s done mostly for quantitative determination of petroleum products. The use of the mass spectrometer for qualitative analysis of solid organic material samples was shown by O'Neil & Wier (1951) and since then a continuous increase in mass spectrometric studies of different classes of organic compounds has been noted. After the gas chromatograph was developed by James & Martin (1952) the quantitative analysis of complex mixtures of organic compounds was possible and after a few years the gas chromatographic method was considered as routine. The first connection of a gas chromatograph (GC) to a mass spectrometer (MS) was made by Holmes & Morell (1957). They studied gases using a splitter system where only a small part or less than 1% of the effluent from a packed column was transferred to the ion source of the mass spectrometer. The next step in GC—MS development was made by Gohlke (1959), who studied compounds of low molecular weight using capillary column directly connected to a time-of-flight mass spectrometer. This was possible due to the fact that the carrier gas flow rate could be limited to about 1 ml/min. To avoid the sample loss resulting from using a packed column with the splitter system a jet molecular separator was constructed as an interphase between the packed column and a mass spectrometer with magnetic sector analyser (Ryhage, 1964). Mixtures of fatty acids and of hydrocarbons with a molecular weight of up to about 420 were studied. In this study spectra were taken at irregular intervals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Axen, U., Green, K., Horlin, D. & Samuelsson, B. (1971). Mass spectrometric determination of picomole amounts of prostaglandine E2 and F using synthetic deuterium labeled carriers. Biochem. biophys. Res Commun, 45, 519–25.CrossRefGoogle Scholar
Becker, E. W. (1961). Separation of Isotopes (ed. London, H.), pp. 360–7. London: George Newnes.Google Scholar
Becker, E. W., Bier, K. & Burghoff, H. (1955). Die Trennduse, Em neues Element zur Gas- und Isotopentrennung. Z. Naturf. 10 a, 565–72.CrossRefGoogle Scholar
Beynon, J. H. (1960). Mass Spectrometry and Its Applications to Organic Chemistry. Amsterdam: Elsevier.Google Scholar
Chapman, S. & Cowling, T. G. (1952). The Mathematical Theory of Nonuniform Gases, 2nd ed.Cambridge University Press.Google Scholar
Ettre, L. S. & Zlatkis, A. (1967). The Practice of Gas Chromatography. New York: John Wiley.Google Scholar
Gohlke, R. S. (1959). Time-of-flight mass spectrometry and gas-liquid partition chromatography. Analyt Chem. 3, 535–41.CrossRefGoogle Scholar
Grob, K. & Völlmin, J. A. (1969). Analyse der ‘semi-volatiles’ aus Cigaretten auch mit Hilfe einer Kombination von hochauflösender Gaschromatographie mit Massenspektrometrie. Beit. Tabakforsch. 5, 52–7.Google Scholar
Hammar, C.G., Holmstedt, B. & Ryhage, R. (1968). Massfragmentography. Identification of chlorpromazine and metabolites in human blood by a new method. Analyt. Biochem. 25, 532–48.CrossRefGoogle Scholar
Hennenberg, D. (1961). Eine Kombination von Gaschromatograph und Massenspektrometer zur Analyse organischer Stoffgemische. Z. analyt. Chem. 183 (1), 1223.CrossRefGoogle Scholar
Hennenberg, D. (1969). Massenspektrometrie organischer Verbiudungen, pp. 40–6. Frankfurt am Main: Akademische Verlagsgesellschaft.Google Scholar
Hites, R. A. & Biemann, K. (1967). A computer-compatible digital data acquisition system for fast-scanning, single-focusing mass spectrometers. Analyt. Chem. 39, 965–70.CrossRefGoogle Scholar
Hites, R. A. & Biemann, K. (1968). Mass spectrometer—computer system particularly suited for gas chromatography of complex mixtures. Analyt. Chem. 40, 1217–21.CrossRefGoogle Scholar
Hites, R. A. & Biemann, K. (1970). Computer evaluation of continuously scanned mass spectra of gas chromatographic effluents. Analyt. Chem. 42, 855–60.CrossRefGoogle Scholar
Holmes, J. C. & Morell, F. A. (1957). Oscillographic mass spectrometric monitoring of gas chromatography. Appl. Spectrose. II, 86–7.CrossRefGoogle Scholar
Horning, E. C. & Horning, M. G. (1971). Human metabolic profiles obtained by GC and GC—MS. J. Chromatogr. Sci. 9, 129–40.CrossRefGoogle Scholar
James, A. T. & Martin, A. J. P. (1952). Gas—liquid portition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanic acid. Biochem. J. 50, 679–90.CrossRefGoogle Scholar
Junk, G. A. (1972). Gas chromatograph—mass spectrometer combinations and their applications. Int. J. Mass Spectrom. & Ion Phys. 8, 171.CrossRefGoogle Scholar
Leemans, F. A. J. M. & McCloskey, J. A. (1967). Combination gas chromatography—mass spectrometry. J. Am. Oil Chem. Soc. 44, 1117.CrossRefGoogle Scholar
McFadden, W. H. (1966). Introduction of gas chromatographic samples to a mass spectrometer. Sep. Sci. I (6), 723–46.Google Scholar
O'Neil, M. J. Jr & Wier, T. P. Jr (1951). Mass spectrometry of heavy hydrocarbons. Analyt. Chem. 23, 830–43.CrossRefGoogle Scholar
Reimendal, F. & Sjövall, J. (1972). Analysis of steroids by off-line computerized gas chromatography—mass spectrometry. Analyt. Chem. 44, 21–9.CrossRefGoogle ScholarPubMed
Reynolds, W. E., Bacon, B. A., Bridges, J. C., Coburn, T. C., Halpern, B., Lederberg, J., Levinthal, E. C., Steed, E. & Tucker, R. B. (1970). A computer operated mass spectrometer system. Analyt. Chem. 42, 1122–9.CrossRefGoogle Scholar
Ryhage, R. (1964). Use of a mass spectrometer as a detector and analyzer for effluents emerging from high temperature gas—liquid chromatography columns. Analyt. Chem. 36, 759–64.CrossRefGoogle Scholar
Ryhage, R. (1967). Efficiency of molecule separators used in gas chromatograph—mass spectrometer applications. Ark. Kemi 26, 305–16.Google Scholar
Ryhage, R. & Von, Sydow E. (1963). Mass spectrometry of terpenes. Acta chem. scand. 17, 2025–35.CrossRefGoogle Scholar
Ryhage, R. & Wikström, S. (1971). Gas Chromatography-Mass Spectrometry, pp. 91119. New York: John Wiley.Google Scholar
Ställberg-Stenhagen, S. & Stenhagen, E. (1969). Gas—Liquid Chromatography—Mass Spectrometry Combination, pp. 167–83. New York: John Wiley.Google Scholar
Sweeley, C. C., Elliott, W. H., Fries, I. & Ryhage, R. (1965). Mass spectometric determination of unresolved components in gas chromatographic effluents. Analyt. Chem. 38, 1549–53.CrossRefGoogle Scholar
Watson, J. T. & Biemann, K. (1964). High-resolution mass spectra of compounds emerging from a gas chromatograph. Analyt. Chem. 36, 1135–7.CrossRefGoogle Scholar
Watson, J. T. (1969). Gas chromatography and mass spectroscopy. In Ancillary Techniques of Gas Chromatography (ed. Ettre, L. S. and McFadden, W. H.), pp. 145225. New York: Interscience.Google Scholar