Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T16:01:44.248Z Has data issue: false hasContentIssue false

Nonlinear dynamics of biopolymers: theoretical models, experimental data

Published online by Cambridge University Press:  17 March 2009

L. V. Yakushevich
Affiliation:
Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, 142292Russia

Extract

Nonlinear dynamics of biopolymers is a new and rapidly developing field of biophysical science. It can be considered as a part of the general dynamics which deals with the internal mobility of biopolymers. Theoreticians define it also as the next (anharmonic or nonlinear) approximation after the first harmonic or linear one.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bannikov, V. S., Bezruchko, S. M., Grishankova, E. V., Kuzmin, S. V., Mitiagin, Iu. A., Orlov, R. Iu., Rozhkov, S. B. & Sokolina, V. A. (1980 a). Investigation of B. megaterium cells by the method of Raman scattering. Dokl. Acad. Sci. USSR 253, 479480.Google Scholar
Bannikov, V. S. & Rozhkov, S. B. (1980 b). Resonant absorption of microwaves by cell bacteria E. coli K-12 (λ). Dokl. Acad. Sci. USSR 255, 746748.Google ScholarPubMed
Baverstock, K. F. & Cundall, R. D. (1989). Are solitons responsible for energy transfer in oriented DNA? Int. J. Radiat. Biol. 55, 151153.CrossRefGoogle ScholarPubMed
Brown, K. G., Erfruth, S. C., Small, E. W. & Peticoplas, W. L. (1972). Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc. Natn. Acad. Sci. USA 64, 14671469.CrossRefGoogle Scholar
Carery, G., Fasella, P. & Gratton, E. (1975). Statistical time events in enzymes: a physical assessment. CRC Crit. Rev. Biochem. 3, 141164.CrossRefGoogle Scholar
Christiansen, P. L., Scott, A. C., Muto, V. & Lomdahl, P. S. (1990). A Toda lattice model of DNA. (Preprint, Technical University of Denmark.)Google Scholar
Davis, M. E. & Van Zandt, L. L. (1988). Microwave response of DNA in solution theory. Phys. Rev. A-1, 888899.CrossRefGoogle Scholar
Davydov, A. S. (1977). Solitons and energy transfer along protein molecules. J. Theor. Biol. 96, 379387.CrossRefGoogle Scholar
Davydov, A. S. (1982). Solitons in quasi-one-dimensional molecular structures. Uspekhi phiz, nauk 138, 603643.CrossRefGoogle Scholar
Davydov, A. S. & Kislukha, N. I. (1973). Solitary excitations in one-dimensional chains. Phys. Stat. Sol. (b) 59, 465470.CrossRefGoogle Scholar
Davydov, A. S. & Suprun, A. D. (1974). Configurational changes and optical properties of alpha-helical proteins. Ukrain. Phys. J. 19, 4450.Google Scholar
Debruner, P. G. & Frauenfelder, H. (1982). Dynamics of proteins. A. Rev. Phys. Chem. 33, 283299.CrossRefGoogle Scholar
Edwards, G. S., Davis, C. C., Saffer, J. D. & Swicord, M. L. (1984). Resonant absorption of selected DNA molecules. Phys. Rev. Lett. 53, 12841287.CrossRefGoogle Scholar
Englander, S. W., Kallenbach, N. R., Heeger, A. J., Krumhansl, J. A. & Litwin, S. (1980). Proc. Natn. Acad. Sci. USA 77, 72227226.CrossRefGoogle Scholar
Fedyanin, V. K., Gochev, I. & Lisy, V. (1986). Nonlinear dynamics of bases in a continual model of DNA double helices. Studia biophys. 116, 5964.Google Scholar
Fedyanin, V. K. & Lisy, V. (1986). Soliton conformational excitations in DNA. Studia biophys. 116, 6571.Google Scholar
Fedyanin, V. K. & Yakushevich, L. V. (1982). Particlelike excitations in the polypeptide chain model. Int. J. Quant. Chem. 21, 10191028.CrossRefGoogle Scholar
Fedyanin, V. K. & Yakushevich, L. V. (1984). Scattering of neutrons and light by DNA solitons. Studia biophys. 103, 171178.Google Scholar
Fernandez, A. (1990). Proton exchange activity as a probe for solitons in RNA. Physica A-167, 338346.CrossRefGoogle Scholar
Fersht, A. R. (1987). The hydrogen bond in molecular recognition. TIBS 12, 301304.Google Scholar
Foster, K. R., Epstein, B. R. & Galt, M. A. (1987). ‘Resonances’ in the dielectric absorption of DNA? Biophys. J. 52, 421425.CrossRefGoogle ScholarPubMed
Frank-Kamenetskii, M. D. (1983). Fluctuational mobility of DNA. Mol. Biol. 17, 639652.Google ScholarPubMed
Frank-Kamenetskii, M. D. (1987). How the double helix breathes. Nature 328, 1718.CrossRefGoogle ScholarPubMed
Frauenfelder, H. (1985). Ligand binding and protein dynamics. In Structure and Motion: Membranes, Nucleic Acids and Proteins (ed. Clementi, E. et al. ), pp. 205218. New York: Adenine Press.Google Scholar
Fritzsche, H. (1982). New structural and dynamic aspects of DNA as revealed by nuclear magnetic resonance. Comm. Mol. Biophys. 1, 325336.Google Scholar
Gabriel, C., Grant, E. H., Tata, R., Brown, P. R. & Noreland, E. (1987). Microwave absorption in aqueous solutions of DNA. Nature 328, 145146.CrossRefGoogle ScholarPubMed
Gaeta, J. (1990). On a model of DNA torsion dynamics. Phys. Lett. A-143, 227232.CrossRefGoogle Scholar
Garibov, R. A. & Ostrovskii, A. V. (1990). Does the microwave radiation change the dynamical behaviour of macromolecules? Uspekhi sovretn. biol. 110, 306320.Google Scholar
Gueron, M., Kochoyan, M. & Leroy, J.-L. (1987). A single mode of DNA base-pair opening drives imino proton exchange. Nature 328, 8992.CrossRefGoogle ScholarPubMed
Homma, S. & Takeno, S. (1984). A coupled base-rotator model for structure and dynamics of DNA. Progr. Theor. Phys. 72, 679693.CrossRefGoogle Scholar
Karplus, M. (1984). Dynamics of proteins. Adv. Biophys. 18, 165190.CrossRefGoogle ScholarPubMed
Keepers, J. W. & James, Th. L. (1982). Models for DNA backbone motions: an interpretation of NMR relaxation experiments. J. Am. Chem. Soc. 104, 929939.CrossRefGoogle Scholar
Khan, A., Bhaumic, D. & Dutta-Roy, B. (1985). The possible role of solitonic process during A to B conformational changes in DNA. Bull. Math. Biol. 47, 783789.CrossRefGoogle Scholar
Krumhansl, J. A. & Alexander, D. M. (1983). Nonlinear dynamics and conformational excitations in biomolecular materials. In Structure and Dynamics: Nucleic Acids and Proteins (ed. Clementi, E. and Sarma, R. H.), pp. 6180. New York: Adenine Press.Google Scholar
Krumhansl, J. A., Wysin, G. M., Alexander, D. M., Garsia, A., Lomdahl, P. S. & Scott, P. Layne (1985). Further theoretical studies of (nonlinear) conformational motions in double-helix DNA. In Structure and Motion: Membranes, Nucleic Acids and Proteins (ed. Clementi, E. et al. ), pp. 407415. New York: Adenine Press.Google Scholar
Layne, S. P., Bigio, I. J., Scott, A. C. & Lomdahl, P. S. (1985). Transient fluorescence in synchronously dividing Escherichia coli. Proc. Natn. Acad. Sci. USA 82, 75997603.CrossRefGoogle ScholarPubMed
Lomdahl, P. S., Macneil, L., Scott, A. C., Stoneham, M. E. & Webb, S. J. (1982). An assignment to internal soliton vibrations of laser-Raman lines from living cells. Phys. Lett. A-92, 207210.CrossRefGoogle Scholar
McCammon, J. A. & Harvey, S. C. (1987). Dynamics of Proteins and Nucleic Acids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McClure, W. R. (1985). Mechanism and control of transcription in procaryotes. A. Rev. Biochem. 54, 171404.CrossRefGoogle Scholar
Maleev, V. Ya., Kashpur, V. A., Glibitsky, G. M., Krasnitskaya, A. A. & Veretelnik, Ye. V. (1986). Absorption of DNA solutions in the 9–12 GHz frequency range. Biopolim. Kletka 2, 3538.Google Scholar
Mandal, C., Kallenbach, N. R. & Englander, S. W. (1979). Base-pair opening and closing reactions in the double helix. J. mol. Biol. 135, 391411.CrossRefGoogle ScholarPubMed
Muto, V. (1992). Anharmonic models for DNA dynamics. Nanobiology 1, 325334.Google Scholar
Muto, V., Halding, J., Christiansen, P. L. & Scott, A. C. (1988). Solitons in DNA. J. biomol. struct. Dyn. 5, 873894.CrossRefGoogle ScholarPubMed
Nakanishi, M. & Tsuboi, M. (1978). Two channels of hydrogen exchange in a doublehelical nucleic acid. J. mol. Biol. 124, 6171.CrossRefGoogle Scholar
Nakanishi, M., Tsuboi, M., Saijo, Y. & Nagamura, T. (1977). Stopped-flow ultraviolet spectroscopy for hydrogen-exchange studies of nucleic acids. FEBS Lett. 81, 6164.CrossRefGoogle ScholarPubMed
Ostrovskii, L. A. & Sutin, A. M. (1977). Nonlinear elastic waves in rods. J. appl. math. Mech. 41, 543549.CrossRefGoogle Scholar
Peyrard, M. & Bishop, A. R. (1989). Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62, 27552758.CrossRefGoogle ScholarPubMed
Peyrard, M. & Bishop, A. R. (1990). Dynamics of nonlinear excitations in DNA. In Nonlinear Coherent Structures (ed. Barthes, M. and Leon, J.), pp. 2941. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Peyrard, M., Pnevmatikos, St. & Flytzanis, N. (1987). Dynamics of two-component solitary waves in hydrogen chains. Phys. Rev. A-36, 903914.CrossRefGoogle Scholar
Polozov, R. V. & Yakushevich, L. V. (1987). Theoretical analysis of the internal motions in DNA. In Intermolecular Interactions and Conformations of Molecules (ed. Zorkii, P.), pp. 186191. Pushchino: Centre of Biological Research of the USSR Academy of Sciences.Google Scholar
Polozov, R. V. & Yakushevich, L. V. (1988). Nonlinear waves in DNA and regulation of transcription. J. Theor. Biol. 130, 423430.CrossRefGoogle ScholarPubMed
Powell, J. W., Edwards, G. S., Genzel, L., Kremer, F., Witlin, A., Kubasek, W. & Peticolas, W. L. (1987). Investigation of far-infrared vibrational modes in polynucleotides. Phys. Rev. A-34, 39293939.CrossRefGoogle Scholar
Salerno, M. (1991). Discrete model for DNA-promotor dynamics. Phys. Rev. A-86, 52925297.CrossRefGoogle Scholar
Satarič, M., Koruga, Dj., Ivić, Z. & Žakula, R. (1990). The detachment of dimers in the tube of microtubulin as a result of a solitonic mechanism. J. Mol. Electronics 6, 6369.Google Scholar
Scott, A. C. (1969). A nonlinear Klein–Gordon equation. Am. J. Phys. 37, 5261.CrossRefGoogle Scholar
Scott, A. C. (1981). The laser-Raman spectrum of a Davydov soliton. Phys. Lett. A-86, 6062.CrossRefGoogle Scholar
Scott, A. C., Chu, F. Y. & McLaughlin, D. W. (1973). The soliton: a new concept in applied science. Proc. IEEE 61, 14431483.CrossRefGoogle Scholar
Sobell, H. M. (1984). Kink–antikink bound states in DNA structure. In Biological Macromolecules and Assemblies (ed. Jurnak, F. A. and McPherson, A.), pp. 171234. New York: John Wiley and Sons.Google Scholar
Swicord, M. L. & Davis, C. C. (1982). Microwave absorption of DNA between 8 and 12 GHz. Biopolymers 21, 24532460.CrossRefGoogle Scholar
Swicord, M. L. & Davis, C. C. (1983). An optical method of investigating the microwave absorption characteristics of DNA and other biomolecules in solution. Bioelectromagnetics 4, 2142.CrossRefGoogle ScholarPubMed
Toda, M. (1975). Studies of a non-linear lattice. Phys. Rep. C-18, 1123.CrossRefGoogle Scholar
Urabe, H. & Tominaga, Y. (1981). Low frequency Raman spectra of DNA. J. Phys. Soc. Jpn 50, 35433544.CrossRefGoogle Scholar
Urabe, H. & Tominaga, Y. (1982). Low-lying collective modes of DNA double helix by Raman spectroscopy. Biopolymers 21, 24772481.CrossRefGoogle ScholarPubMed
Urabe, H., Tominaga, Y. & Kubota, K. (1983). Experimental evidence of collective vibrations in DNA double helix (Raman spectroscopy). J. chem. Phys. 78, 59375939.CrossRefGoogle Scholar
Van Zandt, L. L. (1986). Resonant microwave absorption by dissolved DNA. Phys. Rev. Lett. 57, 20852087.CrossRefGoogle Scholar
Van Zandt, L. L. & Davis, M. E. (1986). Theory of the anomalous resonant absorption of DNA at microwave frequencies. J. biomol. struct. Dyn. 3, 10451053.CrossRefGoogle ScholarPubMed
Volkov, S. N. (1984). Nonlinear waves and conformational mobility of DNA. (Preprint ITP-84–52P, Institute of Theoretical Physics, Kiev.Google Scholar
Volkov, S. N. (1990). Conformational transition. Dynamics and the mechanism of long-range effects in DNA. J. theor. Biol. 143, 485496.CrossRefGoogle ScholarPubMed
Webb, S. J. (1980). Laser-Raman spectroscopy of living cells. Phys. Rep. 60, 201224.CrossRefGoogle Scholar
Webb, S. J. & Booth, A. D. (1969). Absorption of microwave by microorganisms. Nature 222, 11991200.CrossRefGoogle ScholarPubMed
Weidlich, T. & Lindsay, S. M. (1988). Raman study of the low-frequency vibrations of polynucleotides. J. Phys. Chem. 92, 64796482.CrossRefGoogle Scholar
Weidlich, T., Lindsay, S. M., Tao, N. J., Lewen, G. D., Peticolas, W. L., Thomas, G. A. & Rupprecht, A. (1988). Low-frequency Raman spectra of DNA: A comparison between two oligonucleotide crystals and highly crystalline films of calf thymus DNA. J. phys. Chem. 92, 33153317.CrossRefGoogle Scholar
Weidlich, T., Lindsay, S. M., Rui, Gi., Rupprecht, A., Peticolas, W. L. & Thomas, G. A. (1990). A Raman study of low frequency intrahelical modes in A-, B- and C-DNA. J. biomol. struct. Dyn. 8, 139171.CrossRefGoogle Scholar
Xiao, J.-X., Lin, J.-T. & Zhang, G.-X. (1987). The influence of longitudinal vibration on soliton excitation in DNA double helices, J. Phys. A-20, 24252432.Google Scholar
Yakushevich, L. V. (1987). The effect of damping, external fields and inhomogeneity on the nonlinear dynamics of biopolymers. Studia Biophys. 121, 201207.Google Scholar
Yakushevich, L. V. (1989 a). DNA dynamics. Mol. Biol. 23, 652662.Google Scholar
Yakushevich, L. V. (1989 b). Nonlinear DNA dynamics: a new model. Phys. Lett. A-136, 413417.CrossRefGoogle Scholar
Yakushevich, L. V. (1990 a). On the experimental basis of the nonlinear models of the internal DNA dynamics. SPIE 1403, 507508.Google Scholar
Yakushevich, L. V. (1990 b). Methods of Theoretical Physics and Their Applications to Biopolymer Science. Pushchino: Centre of Biological Research of the USSR Academy of Sciences.Google Scholar
Yakushevich, L. V. (1991). Investigation of a system of nonlinear equations simulating DNA torsional dynamics. Studia Biophys. 140, 163170.Google Scholar
Yakushevich, L. V. (1992). Non-linear DNA dynamics and problems of gene regulation. Nanobiology 1, 343350.Google Scholar
Yakushevich, L. V. (1993). Nonlinear dynamics: hierarchy of the models. Submitted to Physica D.CrossRefGoogle Scholar
Yomosa, S. (1984). Solitary excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A-30, 474480.CrossRefGoogle Scholar
Zhang, Ch.-T. (1987). Soliton excitations in deoxyribonucleic acid (DNA) double helix. Phys. Rev. A-35, 886891.CrossRefGoogle Scholar
Zhang, Ch.-T. (1989). Harmonic and subharmonic resonances of microwave absorption in DNA. Phys. Rev. A-40, 21482153.CrossRefGoogle Scholar
Zhang, Z. & Olson, W. (1987). A model for the B-Z transition of DNA involving solitary excitations.In Proceedings, 6th Annual Conference on Nonlinearity of Condensing Matter,Los Alamos, New Mexico,5–9 May 1986 (ed. A. R. Bishop, D. K. Campbell, P. Kumar & S. E. Trullinger), pp. 265270. Berlin: Springer.Google Scholar