Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T15:57:37.902Z Has data issue: false hasContentIssue false

Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective

Published online by Cambridge University Press:  17 March 2009

Myer Bloom
Affiliation:
Department of Physics, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C., Canada V6T 1Z1
Evan Evans
Affiliation:
Department of Physics, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C., Canada V6T 1Z1 Department of Pathology, University of British Columbia, Acute Care Unit, Vancouver, B.C., Canada V6T 1Z3.
Ole G. Mouritsen
Affiliation:
Department of Physical Chemistry and Department of Structural Properties of Materials, The Technical University of Denmark, DK-2800 Lyngby, Denmark

Extract

The motivation for this review arises from the conviction that, as a result of the mass of experimental data and observations collected in recent years, the study of the physical properties of membranes is now entering a new stage of development. More and more, experiments are being designed to answer specific, detailed questions about membranes which will lead to a quantitative understanding of the way in which the physical properties of membranes are related to and influence their biological function.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abney, J. R., Braun, J. & Owicki, J. C. (1987). Lateral interactions among membrane proteins. Implications for the organization of gap junctions. Biophys. J. 52, 441454.CrossRefGoogle ScholarPubMed
Abney, J. R. & Owicki, J. C. (1985). Theories of protein–lipid and protein–protein interactions. In Progress in Protein–Lipid Interactions (ed. Watts, A. and de Pont, J. J. H. H. M.), pp. 160. Amsterdam: Elsevier.Google Scholar
Abragam, A. (1961). The Principles of Nuclear Magnetism. London: Oxford University Press.Google Scholar
Alberts, A., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1989). Molecular Biology of the Cell, 2nd ed.New York: Garland.Google Scholar
Albon, N. & Sturtevant, J. M. (1978). Nature of the gel to liquid crystal transition of synthetic phosphatidylcholines. Proc. natn. Acad. Sci. U.S.A. 75, 22582260.CrossRefGoogle ScholarPubMed
Albrecht, O., Gruler, H. & Sackmann, E. (1978). Polymorphism of phospholipid monolayers. J. Phys., Paris 39, 301313.Google Scholar
Altenbach, C., Marti, T., Khorana, H. K. & Hubbell, W. L. (1990). Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science, Wash. 248, 10881092.CrossRefGoogle ScholarPubMed
Ashcroft, N. W. & Mermin, N. D. (1976). Solid State Physics. New York: Holt, Rinehart and Winston.Google Scholar
Bar, L. M., Barenholz, Y. & Thompson, T. E. (1987). Dependence on phospholipid composition of the traction of cholesterol undergoing spontaneous exchange between small unilamellar vesicles. Biochemistry 26, 54605465.CrossRefGoogle Scholar
Berendsen, H. J. C. (1986). Biological molecules and membranes. In Molecular Dynamics Simulations and Statistical Mechanical Systems. Proc. Int. School ‘Enrico Fermi’, course xcvii (ed. Ciccotti, G. and Hoover, W. G.), pp. 496519. Amsterdam: North-Holland.Google Scholar
Berndl, K., Kas, J., Lipowsky, R., Sackmann, E. & Seifert, U. (1990). Shape transformations of giant vesicles: extreme sensitivity to bilayer asymmetry. Europhys. Lett. 13, 659664.CrossRefGoogle Scholar
Bienvenue, A., Bloom, M., Davis, J. H. & Devaux, P. F. (1982). Evidence of protein-associated lipids from deuterium nuclear magnetic resonance studies of rhodopsindimyristoylphosphatidylcholine recombinants. J. biol. Chem. 257, 30323038.CrossRefGoogle ScholarPubMed
Biltonen, R. C. (1990). A statistical-thermodynamic view of cooperative structural changes in phospholipid bilayer membranes: their potential role in biological function. J. Chem. Thermodynamics 22, 119.CrossRefGoogle Scholar
Binder, K. (1984). Applications of the Monte Carlo Method. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Bivas, I., Hanusse, P., Botherel, P., Lallane, J. L. & Aguerre-Chariol, O. (1987). An application of optical microscopy to the determination of the curvature elastic modulus of biological and model membranes. J. Phys. France 48, 855867.CrossRefGoogle Scholar
Black, S. G. & Dixon, G. S. (1981). Ac calorimetry of dimyristoylphosphatidylcholine multilayers: hysteresis and annealing near the gel to liquid–crystal transition. Biochemistry 20, 67406744.CrossRefGoogle ScholarPubMed
Bloch, K. (1965). The biological synthesis of cholesterol. Science, Wash. 150, 1928.CrossRefGoogle ScholarPubMed
Bloch, K. (1983). Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14, 4792.CrossRefGoogle ScholarPubMed
Bloch, K. (1985). Cholesterol, evolution of structure and function. In Biochemistry of Lipids and Membranes (ed. Vance, D. E. and Vance, J. E.), pp. 124. New York: Benjamin/Cummings.Google Scholar
Blok, M. C., Van Deenen, L. L. M. & De Grier, J. (1977). The effect of cholesterol incorporation on the temperature dependence of water permeation through liposomal membranes prepared from phosphatidylcholines. Biochim. biophys. Acta 464, 509518.CrossRefGoogle ScholarPubMed
Bloom, M. (1988). NMR studies of membranes and whole cells. In Physics of NMR Spectroscopy in Biology and Medicine (ed. Maraviglia, B.), pp. 121157. Amsterdam: North-Holland.Google Scholar
Bloom, M., Burnell, E. E., MacKay, A. L., Nichol, C. P., Valic, M. I. & Weeks, G. (1978). Fatty acyl chain order in lecithin model membranes determined from proton magnetic resonance. Biochemistry 17, 57505762.CrossRefGoogle ScholarPubMed
Bloom, M., Burnell, E. E., Roeder, S. B. W. & Valic, M. I. (1977). Nuclear magnetic resonance line shapes in lyotropic liquid crystals and related systems. J. chem. Phys. 66, 30123021.CrossRefGoogle Scholar
Bloom, M. & Evans, E. (1991). Observations of surface undulations on the mesoscopic length scale by NMR. In Biologically Inspired Physics (ed. Peliti, L.). (In the Press.)Google Scholar
Bloom, M., Morrison, C., Sternin, E. & Thewalt, J. L. (1991). Spin echoes and the dynamic properties of membranes. In Erwin Hahn – The Book (ed. Bagguley, D. M. S.). London: Oxford University Press.Google Scholar
Bloom, M. & Mouritsen, O. G. (1988). The evolution of membranes. Can. J. Chem. 66, 706712.CrossRefGoogle Scholar
Bloom, M. & Smith, I. C. P. (1985). Manifestations of lipid–protein interactions in deuterium NMR. In Progress in Protein–Lipid Interactions (ed. Watts, A. and Depont, J. J. H. H. M.), pp. 6188. Amsterdam: Elsevier North Holland Biomedical Press.Google Scholar
Bloom, M. & Sternin, E. (1987). Transverse nuclear spin relaxation in phospholipid bilayer membranes. Biochemistry 26, 21012105.CrossRefGoogle Scholar
Blume, A. & Hillman, M. (1986). Dimyristoylphosphatidicacid/cholesterol bilayers. Thermodynamic properties and kinetics of phase transitions as studied by the pressure jump relaxation technique. Eur. Biophys. J. 13, 343353.Google ScholarPubMed
Braun, J., Abney, J. R. & Owicki, J. C. (1987). Lateral interactions among membrane proteins. Valid estimates based on freeze-fracture electron microscopy. Biophys. J. 52, 427439.CrossRefGoogle ScholarPubMed
Brochard, F. & Lennon, J. F. (1975). Frequency spectrum of the flicker phenomenon in erythrocytes. J. Phys., Paris 36, 10351047.Google Scholar
Brown, M. F. (1984). Unified picture for spin-lattice relaxation of lipid bilayers and biomembranes. J. chem. Phys. 80, 28322836.CrossRefGoogle Scholar
Brown, M. F. & Davis, J. H. (1981). Orientation and frequency dependence of the deuterium spin-lattice relaxation in multilamellar phospholipid dispersions: implications for dynamic models of membrane structure. Chem. Phys. Lett. 79, 431435.CrossRefGoogle Scholar
Brown, M. F. & Söderman, O. (1990). Orientational anisotropy of nuclear spin relaxation in phospholipid membranes. Chem. Phys. Lett. 167, 158163.CrossRefGoogle Scholar
Büldt, G., Gally, H. U., Seelig, J. & Zaccai, G. (1979). Neutron diffraction studies on phosphatidylcholine model membranes: head group conformations, J. molec. Biol. 134, 673691.CrossRefGoogle Scholar
Caffrey, M. (1985). Kinetics and mechanism of the lamellar gel/liquid crystal and lamellar/inverted hexagonal phase transition in phosphatidylethanolamine: a real-time X-ray diffraction study using synchrotron radiation. Biochemistry 24, 48264844.CrossRefGoogle Scholar
Caffrey, M. (1989). The study of lipid phase transition kinetics by time-resolved X-ray diffraction. A. Rev. Biophys. Biophys. Chem. 18, 159186.Google Scholar
Caillé, A., Pink, D., De Verteuil, F. & Zuckermann, M. (1980). Theoretical models of quasi-two-dimensional mesomorphic monolayers and membrane bilayers. Can. J. Phys. 58, 581611.CrossRefGoogle Scholar
Carruthers, A. & Melchior, D. L. (1983). Studies of the relationship between bilayer water permeability and bilayer physical state. Biochemistry 22, 57975807.CrossRefGoogle Scholar
Caspar, D. L. D., Clarage, J., Salunke, D. M. & Clarage, M. (1988). Liquid-like movements in crystalline insulin. Nature, Lond. 332, 659662.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1975). The origin of nuclei and of eucaryotic cells. Nature, Lond. 256, 463468.CrossRefGoogle Scholar
Cavalier-Smith, T. (1981). The origin and early evolution of the eucaryotic cell. In Molecular and Cellular Aspects of Microbial Evolution, Society for General Microbiology Symposium, 32 (ed. Carlile, M. J., Collins, J. F. and Moseley, B. E. B.), pp. 3384. Cambridge University Press.Google Scholar
Cavalier-Smith, T. (1987). The origin of eucaryote and archaebacterial cells. Ann. N.Y. Acad. Sci. 503, 1754.CrossRefGoogle Scholar
Cevc, G. & Marsh, D. (1985). Hydration on noncharged lipid bilayer membranes. Biophys. J. 47, 2131.CrossRefGoogle ScholarPubMed
Cevc, G. & Marsh, D. (1987). Phospholipid Bilayers: Physical Principles and Models. New York: Wiley.Google Scholar
Charvolin, J. & Tardieu, A. (1978). Lyotropic liquid crystals: structure and molecular motion. In Liquid Crystals, supp. 14, Solid State Physics (ed. Liebert, L.), pp. 209257. New York: Academic Press.Google Scholar
Cossins, A. R. & Sinensky, M. (1984). Adaptation of membranes to temperature, pressure and exogenous lipids. In Physiology of Membrane Fluidity, vol. 2 (ed. Shinitzky, M.), pp. 120. Boca Raton, Florida: CRC Press.Google Scholar
Costello, M. J. & Gulik-Krzywicki, T. (1976). Correlated X-ray diffraction and freeze-fracture studies of membrane model systems. Biochim. biophys. Acta 455, 412432.CrossRefGoogle ScholarPubMed
Cruzeiro-Hansson, L., Ipsen, J. H. & Mouritsen, O. G. (1989). Intrinsic molecules in lipid membranes change the lipid–domain interfacial area: cholesterol at domain interfaces. Biochim. biophys. Acta 979, 166176.CrossRefGoogle ScholarPubMed
Cruzeiro-Hansson, L. & Mouritsen, O. G. (1988). Passive ion permeability of lipid membranes modelled via lipid–domain interfacial area: cholesterol at domain interfaces. Biochim. biophys. Acta 944, 6372.CrossRefGoogle Scholar
Cullis, P. R., Hope, M. J., De Kruijf, B., Verkleij, A. J. & Tilcock, C. P. S. (1985). Structural properties and functional roles of phospholipids in biological membranes. In Phospholipids and Cellular Regulation, vol. 1 (ed. Kuo, J. F.), pp. 159. Boca Raton, Florida: CRC Press.Google Scholar
Datema, K. P., Pauls, K. P. & Bloom, M. (1986). Deuterium nuclear magnetic resonance investigation of the exchangeable sites on Gramicidin A and Gramicidin S in multilamellar vesicles of dipalmitoylphosphatidylcholine. Biochemistry 25, 37963803.CrossRefGoogle ScholarPubMed
Davis, J. H. (1979). Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoylphosphatidylcholine. Biophys. J. 27, 339358.CrossRefGoogle Scholar
Davis, J. H. (1983). The description of membrane lipid conformation, order and dynamics by 2H NMR. Biochim. biophys. Acta 737, 117171.CrossRefGoogle ScholarPubMed
Davis, J. H., Clare, D. M., Hodges, R. S. & Bloom, M. (1983). Interaction of a synthetic amphiphilic polypeptide and lipids in a bilayer structure. Biochemistry 22, 52985305.CrossRefGoogle Scholar
Davis, J. H., Jeffrey, K. R., Bloom, M., Valic, M. I. & Higgs, T. P. (1976). Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 42, 390394.CrossRefGoogle Scholar
De Grier, J., Noordam, P. C., Van Echteld, C. A. J., Mandersloot, J. G., Bijleveld, C., Verkleij, J., Cullis, P. R. & De Kruiff, B. (1979). In Membrane Transport in Erythrocytes, Alfred Benzon Symp. no. 14 (ed. Lassen, U. V., Ussing, H. H. and Wieth, J. O.), pp. 7585. Copenhagen: Munksgaard.Google Scholar
De Rosa, M., Gambacorta, A. & Gliozzi, A. (1986). Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol. Rev. 50, 7080.CrossRefGoogle ScholarPubMed
De Verteuil, F., Pink, D. A., Vadas, E. B. & Zuckermann, M. J. (1981). Phase diagrams for impure lipid systems. Application to lipid/anaesthetic mixtures. Biochim. biophys. Acta 640, 207242.CrossRefGoogle ScholarPubMed
Deamer, D. W. (1985). Surface structures are formed by organic components of the Murchison carbonaceous chondrite. Nature, Lond. 317, 792794.CrossRefGoogle Scholar
Deamer, D. W. (1986). Role of amphiphilic compounds in the evolution of membrane structure on the early Earth. Origins of Life 17, 325.Google ScholarPubMed
Deamer, D. W. & Pashley, R. M. (1989). Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Origins of Life 19, 2138.Google ScholarPubMed
Deisenhofer, J. & Michel, H. (1989). The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science, Wash. 245, 14631473.CrossRefGoogle ScholarPubMed
Devaux, P. F. (1983). ESR and NMR studies of lipid–protein interactions in membranes. In Biological Magnetic Resonance, vol. 5 (ed. Berliner, L. J. and Reuben, J.), pp. 183299. New York: Plenum Press.CrossRefGoogle Scholar
Doniach, S. (1978). Thermodynamic fluctuations in phospholipid bilayers. J. chem. Phys. 68, 49124916.CrossRefGoogle Scholar
Duwe, H.-P., Zeman, K. & Sackmann, E. (1989). Binding undulations of lipid bilayers and the red blood cell membrane: a comparative study. Prog. colloid polym. Sci. 79, 610.CrossRefGoogle Scholar
Dyson, F. J. (1982). A model for the origin of life. J. molec. Biol. 18, 344350.Google Scholar
Dyson, F. J. (1985). Origins of Life. Cambridge University Press.Google Scholar
Edholm, O. & Jähnig, F. (1988). The structure of a membrane-spanning polypeptide studied by molecular dynamics. Biophys. Chem. 30, 279292.CrossRefGoogle ScholarPubMed
Edholm, O. & Johansson, J. (1987). Lipid bilayer polypeptide interactions studied by molecular dynamics simulation. Eur. Biophys. J. 14, 203209.CrossRefGoogle ScholarPubMed
Egberts, E. & Berendsen, H. H. C. (1988). Molecular dynamics simulation of a smectic liquid crystal with atomic detail. J. chem. Phys. 89, 37183732.CrossRefGoogle Scholar
Eisenberg, D. (1984). Three-dimensional structure of membrane and surface proteins. A. Rev. Biochem. 53, 595623.CrossRefGoogle ScholarPubMed
Estep, T. N., Mountcastle, D. B., Biltonen, R. C. & Thompson, T. E. (1978). Studies on the anomalous thermodynamic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine–cholesterol mixtures. Biochemistry 17, 19841989.CrossRefGoogle ScholarPubMed
Evans, E. (1974). Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14, 923931.CrossRefGoogle ScholarPubMed
Evans, E. (1985). Molecular structure and viscoelastic properties of biomembranes. In Festkörperprobleme (Advances in Solid State Physics), vol. xxv (ed. Grosse, P.), pp. 735745. Braunschweig: Viewweg.CrossRefGoogle Scholar
Evans, E. & Hochmuth, R. M. (1977). A solid–liquid composite model of the red blood cell membrane. J. Membr. Biol. 30, 351362.CrossRefGoogle Scholar
Evans, E. & Hochmuth, R. M. (1978). Mechano-chemical properties of membranes. In Current Topics in Membranes and Transport, vol. 10 (ed. Kleinzeller, A. & Bronner, F.), pp. 164. New York: Academic Press.Google Scholar
Evans, E. & Kwok, R. (1982). Mechanical calorimetry of large dimyristoylphosphatidylcholine vesicles in the phase transition region. Biochemistry 21, 48744879.CrossRefGoogle ScholarPubMed
Evans, E. & Needham, D. (1987). Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions. J. Phys. Chem. 91, 42194228.CrossRefGoogle Scholar
Evans, E. & Rawicz, W. (1990). Entropy-driven tension and bending elasticity in condensed-fluid phases. Phys. Rev. Lett. 64, 20942097.CrossRefGoogle Scholar
Evans, E. & Sackmann, E. (1988). Translational and rotational drag coefficients for a disk moving in a liquid membrane associated with a rigid substrate. J. Fluid. Mech. 194, 553561.CrossRefGoogle Scholar
Evans, E. & Skalak, R. (1980). Mechanics and thermodynamics of membranes. CRC Crit. Rev. Bioeng. 3, 181418.Google Scholar
Evans, E., Yeung, A. K., Sung, J. B. & Waugh, R. (1991). (To be published.)Google Scholar
Franks, N. P. & Lieb, W. R. (1982). Molecular mechanisms of general anaesthesia. Nature, Lond. 300, 487493.CrossRefGoogle ScholarPubMed
Fraser, D. P., Chantrell, R. W., Melville, D. & Tildesley, D. J. (1989). Two-dimensional study of lipid molecules in a bilayer membrane. Liq. Cryst. 3, 423441.CrossRefGoogle Scholar
Fraser, D. P., Mouritsen, O. G. & Zuckermann, M. J. (1990). Computer simulation of binary hard-disc mixtures. Phys. Scr. (in the Press).CrossRefGoogle Scholar
Frauenfelder, H. (1989). The Debye–Waller factor: From villain to hero in protein crystallography. Int. J. Quantum Chem. 35, 711715.CrossRefGoogle Scholar
Freire, E. & Biltonen, R. L. (1978). Estimation of molecular averages and equilibrium fluctuations in lipid bilayer systems from the excess heat capacity function. Biochim. biophys. Acta 514, 5468.CrossRefGoogle ScholarPubMed
Freire, E. & Snyder, B. (1982). Quantitative characterization of the lateral distribution of membrane proteins within the lipid bilayer. Biophys. J. 37, 617624.CrossRefGoogle ScholarPubMed
Gennis, R. B. (1989). Biomembranes. New York: Springer-Verlag.CrossRefGoogle Scholar
Genz, A. & Holzwarth, J. F. (1986). Dynamic fluorescence measurements on the main phase transition of dipalmitoylphosphatidylcholine vesicles. Eur. Biophys. J. 13, 323330.CrossRefGoogle Scholar
Genz, A., Holzwarth, J. F. & Tsong, T. Y. (1986). The influence of cholesterol on the main phase transition of unilamellar dipalmitoylphosphatidylcholine vesicles. Biophys. J. 50, 10431051.CrossRefGoogle Scholar
Georgallas, A., MacArthur, J. D., Ma, X.-P., Nguyen, C. V. & Palmer, G. R. (1987). The diffusion of small ions through phospholipid bilayers. J. chem. Phys. 86, 72187226.CrossRefGoogle Scholar
Gershefeld, N. L. (1989). Thermodynamics of phospholipid bilayer assembly. Biochemistry 28, 42294232.CrossRefGoogle Scholar
Gheriani-Gruszka, N., Almog, S., Biltonen, R. L. & Lichtenberg, D. (1988). Hydrolysis of phosphatidylcholine in phosphatidylcholine-choline mixtures by porcine pancreatic phospholipase A2. Biol. Chem. 263, 1180811813.CrossRefGoogle Scholar
Goldstein, R. E. & Leibler, S. (1989). Structural phase transitions of interacting membranes. Phys. Rev. A 40, 10251035.CrossRefGoogle ScholarPubMed
Griffin, R. G. (1981). Solid state nuclear magnetic resonance in lipid bilayers. Methods Enzym. 72, 108174.CrossRefGoogle ScholarPubMed
Gruner, S. M. (1989). Stability of lyotropic phases with curved interfaces. J. phys. Chem. 93, 75627570.CrossRefGoogle Scholar
Gruner, S. M., Cullis, P. R., Hope, M. J. & Tilcock, C. P. S. (1985). Lipid polymorphism: the molecular basis of non-bilayer phases. A. Rev. Biophys. Biophys. Chem. 14, 211238.CrossRefGoogle Scholar
Guldbrand, L., Jöonsson, B. & Wennerström, H. (1982). Hydration forces and phase equilibria in the dipalmitoylphosphatidylcholine–water system. J. Colloid Interface Sci. 89, 532541.CrossRefGoogle Scholar
Gulik, A., Luzzati, V., De Rosa, M. & Gambacorta, A. (1985). Structure and polymorphism of bipolar isopranyl ether lipids from archaebacteria. J. molec. Biol. 182, 131149.CrossRefGoogle ScholarPubMed
Guy, H. R. (1985). Amino side chain partition energies and distribution of residues in soluble proteins. Biophys. J. 47, 6170.CrossRefGoogle ScholarPubMed
Hatta, I., Imaizumi, S. & Akutsu, Y. (1984). Evidence for weak first-order nature of lipid bilayer phase transition from analysis of pseudo-critical specific heat. J. Phys. Soc. Japan 53, 882888.CrossRefGoogle Scholar
Hawton, M. H. & Doane, J. W. (1987). Pretransitional phenomena in phospholipid/water multilayers. Biophys. J. 52, 401404.CrossRefGoogle Scholar
Helfrich, W. (1975). Out-of-phase fluctuations of lipid bilayers. Z. Naturf. 30c, 841842.CrossRefGoogle Scholar
Helfrich, W. & Servuss, R.-M. (1984). Undulations, steric interactions and cohesion of fluid membranes. Nuovo Cim. D 3, 137151.CrossRefGoogle Scholar
Henderson, R. (1981). Membrane protein structure. In Membranes and Intermolecular Communications (ed. Balian, R., Chabre, M. and Devaux, P. F.), pp. 231249. Amsterdam: Elsevier/North-Holland.Google Scholar
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H. (1990). Model for the structure of Bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. molec. Biol. 213, 899929.CrossRefGoogle ScholarPubMed
Henderson, R. & Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature, Lond. 257, 2832.CrossRefGoogle ScholarPubMed
Hoover, W. G. (1986). Molecular Dynamics. Heidelberg: Springer-Verlag.Google Scholar
Hoppe, W., Lohmann, W., Markl, H. & Ziegler, H. (eds) (1983). Biophysics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Houslay, M. D. & Stanley, K. K. (1982). Dynamics of Biological Membranes. New York: Wiley.Google Scholar
Huang, C.-H. (1977). A structural model for the cholesterol-phosphatidylcholine complexes in bilayer membranes. Lipids 12, 348356.CrossRefGoogle ScholarPubMed
Huang, T., De Siervo, A. J. & Yang, C.-X. (1991). Effect of cholesterol and lanosterol on the structure and dynamics of the cell membrane of Mycoplasma capricolum. Deuterium nuclear magnetic resonance study. Biophys. J. 59, 691702.CrossRefGoogle ScholarPubMed
Hughes, B. D., Pailthorpe, B. A. & White, L. R. (1981). The translational and rotational drag on a cylinder moving through a membrane. J. fluid Mech. 110, 349372.CrossRefGoogle Scholar
Huschilt, J. C., Hodges, R. S. & Davis, J. H. (1985). Phase equilibria in an amphiphilic peptide-phospholipid model membrane by 2H nuclear magnetic resonance difference spectroscopy. Biochemistry 24, 13771385.CrossRefGoogle Scholar
Imaizumi, S. & Garland, C. W. (1987). Ac calorimetric study of main transition in dipalmitoylphosphatidylcholine (DPPC). J. Phys. Soc. Japan 56, 38873892.CrossRefGoogle Scholar
Ipsen, J. H., Karlström, G., Mouritsen, O. G., Wennerström, H. W. & Zuckermann, M. J. (1987). Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. biophys. Acta 905, 162172.CrossRefGoogle ScholarPubMed
Ipsen, J. H. & Mouritsen, O. G. (1988). Modelling the phase equilibria in two-component membranes of phospholipids with different chain lengths. Biochim. biophys. Acta 944, 121134.CrossRefGoogle Scholar
Ipsen, J. H., Mouritsen, O. G. & Bloom, M. (1990 a). Relationships between lipid membrane area, hydrophobic thickness and acyl-chain orientational order. The effects of cholesterol. Biophys. J. 57, 405412.CrossRefGoogle ScholarPubMed
Ipsen, J. H., Mouritsen, O. G. & Zuckermann, M. J. (1989 a). Decoupling of crystalline and conformational degrees of freedom in lipid monolayers. J. chem. Phys. 91, 18551865.CrossRefGoogle Scholar
Ipsen, J. H., Mouritsen, O. G. & Zuckermann, M. J. (1989 b). Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys J. 56, 661667.CrossRefGoogle ScholarPubMed
Ipsen, J. H., Jorgensen, K. & Mouritsen, O. G. (1990 b). Density fluctuations in saturated phospholipid bilayers increase as the acyl-chain length is decreased. Biophys. J. 58, 10991107.CrossRefGoogle Scholar
Israelachvili, J., Marcelja, S. & Horn, R. G. (1981). Physical principles of membrane organization. Q. Rev. Biophys. 13, 121200.CrossRefGoogle Scholar
Jacobs, R. E., Hudson, B. S. & Anderson, H. C. (1977). A theory of phase transitions and phase diagrams for one- and two-component phospholipid bilayers. Biochemistry 16, 43494359.CrossRefGoogle ScholarPubMed
Jacobs, R. E. & Oldfield, O. (1981). NMR of membranes. Progr. NMR Spectrosc. 14, 113136.CrossRefGoogle Scholar
Jähnig, F. (1981 a). Critical effects from lipid–protein interaction in membranes. I. Biophys. J. 36, 329345.CrossRefGoogle ScholarPubMed
Jähnig, F. (1981 b). Critical effects from lipid–protein interaction in membranes. II. Biophys. J. 36, 347357.CrossRefGoogle ScholarPubMed
Jähnig, F., Vogel, H. & Best, L. (1982). Unifying description of the effect of membrane proteins on lipid order. Verification for the melittin/dimyristoylphosphatidylcholine system. Biochemistry 21, 67906798.CrossRefGoogle ScholarPubMed
Jan, N. & Pink, D. A. (1984). On computer simulation methods used to study models of two-component lipid bilayers. Biochemistry 23, 32273231.CrossRefGoogle ScholarPubMed
Jones, F. P., Tevlin, P. & Trainor, L. E. H. (1989). Phase transitions of lipid bilayers. 2. Mean field theory. J. chem. Phys. 91, 19181925.CrossRefGoogle Scholar
Jönsson, B. & Wennerström, H. (1981). Thermodynamics of ionic amphiphile–water systems. J. Coll. Int. Sci. 80, 482496.CrossRefGoogle Scholar
Jorgensen, K., Ipsen, J. H., Mouritsen, O. G., Bennett, D. & Zuckermann, M. J. (1991 a). A general model for the interaction of foreign molecules with lipid membranes: drugs and anaesthetics. Biochim. biophys. Acta 1062, 227238.CrossRefGoogle ScholarPubMed
Jorgensen, K., Ipsen, J. H., Mouritsen, O. G., Bennett, D. & Zuckermann, M. J. (1991 b). The effect of density fluctuations on the partitioning of foreign molecules into lipid bilayers: application to anaesthetics and insecticides. Biochim. biophys. Acta (submitted).CrossRefGoogle ScholarPubMed
Kandler, O. & König, H. (1985). Cell envelopes of Archaebacteria. In The Bacteria Vol. 8. Archaebacteria (ed. Woese, C. R. and Wolfe, R. S.), pp. 413457. Orlando, Fla.: Academic Press.Google Scholar
Kanehisa, M. I. & Tsong, T. Y. (1978). Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers. J. Am. Chem. Soc. 100, 424432.CrossRefGoogle Scholar
Knoll, A. H. (1983). Biological interactions and precambrian eukaryotes. In Biotic Interactions in Recent and Fossil Benthic Communities (eds. Tevesz, M. J. S. and McCall, P. L.), pp. 251283. New York: Plenum Press.CrossRefGoogle Scholar
Knoll, A. H. (1985). Patterns of evolution in the Archaean and Proteozoic eons. Paleobiology 11, 5364.CrossRefGoogle Scholar
Knoll, W., Schmidt, G. & Sackmann, E. (1983). Critical demixing in fluid bilayers of phospholipid mixtures. A neutron diffraction study. J. chem. Phys. 79, 34393442.CrossRefGoogle Scholar
Kühlbrandt, W. (1988). Three dimensional crystallization of membrane proteins. Q. Rev. Biophys. 21, 429477.CrossRefGoogle ScholarPubMed
Kwok, R. & Evans, E. (1981). Thermoelasticity of large lecithin bilayer vesicles. Biophys. J. 35, 637652.CrossRefGoogle ScholarPubMed
Kyte, J. & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J. molec. Biol. 157, 105132.CrossRefGoogle ScholarPubMed
Lafleur, M., Cullis, P. R. & Bloom, M. (1990 b). Modulation of the orientational order profile of the lipid acyl chain in the Lα phase. Eur. Biophys. J. 19, 5562.CrossRefGoogle Scholar
Lafleur, M., Cullis, P. R., Fine, B. & Bloom, M. (1990 a). Comparison of the orientational order of lipid acyl chains in the Lα and the H11 phases. Biochemistry 29, 83258333.CrossRefGoogle Scholar
Lange, Y., Swaisgood, M. H., Ramos, B. V. & Steck, T. L. (1989). Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyolin in cultured human fibroblasts. J. biol. Chem. 264, 37863793.CrossRefGoogle ScholarPubMed
Langworthy, T. A. (1985). Lipids of Archaebacteria. In The Bacteria. Vol. 8, Archaebacteria (ed. Woese, C. R. and Wolfe, R. S.), pp. 459497. Orlando, Fla.: Academic Press.Google Scholar
Lee, A. G. (1977). Lipid phase transitions and phase diagrams. II. Mixtures involving lipids. Biochim. biophys. Acta 472, 285344.CrossRefGoogle Scholar
Lee, A. G. (1978). Calculation of phase diagrams for non-ideal mixtures of lipids, and a possible non-random distribution of lipids in lipid mixtures in the liquid crystalline phase. Biochim. biophys. Acta 507, 433444.CrossRefGoogle Scholar
Leibler, S. (1989). Equilibrium statistical mechanics of fluctuating films and surfaces. In Statistical Mechanics of Membranes and Surfaces. Proceedings of the Jerusalem Winter School for Theoretical Physics (ed. Nelson, D. R., Piran, T. and Weinberg, S.), pp. 160. Singapore: World Scientific.Google Scholar
Lewis, B. A. & Engelman, D. M. (1983 a). Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. molec. Biol. 166, 211217.CrossRefGoogle ScholarPubMed
Lewis, B. A. & Engelman, D. M. (1983 b). Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses. J. molec. Biol. 166, 203210.CrossRefGoogle Scholar
Lindblom, G. & Rilfors, L. (1989). Cubic phases and isotropic structures formed by membrane lipids – possible biological relevance. Biochim. biophys. Acta 988, 221256.CrossRefGoogle Scholar
Lindblom, G., Wennerström, H. & Arvidson, G. (1977). Translational diffusion in model membranes studied by nuclear magnetic resonance. Int. J. quant. Chem. 12, Suppl. 2, 153158.Google Scholar
Lipowsky, R. (1991). The conformation of membranes. Nature, Lond. 349, 475481.CrossRefGoogle ScholarPubMed
Lo, S.-L. & Chang, E. L. (1990). Purification and characterization of a liposomal-forming tetraaether lipid fraction. Biochem. biophys. Res. Commun. 167, 228243.CrossRefGoogle ScholarPubMed
Lookman, T., Pink, D. A., Grundke, E. W., Zuckermann, M. J. & De Verteuil, F. (1982). Phase separation in lipid bilayers containing integral proteins. Computer simulation studies. Biochemistry 21, 55935601.CrossRefGoogle ScholarPubMed
Luzzati, V., Gulik, A., De Rosa, M. & Gambacorta, A. (1987). Lipids from Sulfolobus solfataricus. Life at high temperatures and the structure of membranes. Chemica Scr. B 27, 211219.Google Scholar
Mabrey, S., Mateo, P. L. & Sturtevant, J. M. (1978). High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphosphatidylcholines. Biochemistry 17, 24642468.CrossRefGoogle ScholarPubMed
Mabrey, S. & Sturtevant, J. M. (1978). High-sensitivity differential scanning calorimetry in the study of biomembranes and related model systems. Meth. Membrane Biol. 9, 237274.CrossRefGoogle Scholar
MacDonald, A. L. & Pink, D. A. (1987). Thermodynamics of glycophorin in phospholipid bilayer membranes. Biochemistry 26, 19091917.CrossRefGoogle ScholarPubMed
McElhaney, R. N. (1982). The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem. Phys. Lipids 30, 229259.CrossRefGoogle ScholarPubMed
MacKay, A. L. (1981). A proton NMR study of the gel and liquid–crystalline phases of dipalmitoylphosphatidylcholine. Biophys. J. 35, 301313.CrossRefGoogle Scholar
MacKay, A. L., Burnell, E. E., Bienvenue, A., Devaux, P. F. & Bloom, M. (1983). Flexibility of membrane proteins by broadline proton magnetic resonance. Biochim. biophys. Acta 728, 461462.Google ScholarPubMed
Mantsch, H. H., Saito, H. & Smith, I. C. P. (1977). Deuterium magnetic resonance. Applications in physics, chemistry and biology. Progr. NMR Spectrosc. 11, 211272.CrossRefGoogle Scholar
Marcelja, S. (1974). Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim. biophys. Acta 367, 165176.CrossRefGoogle ScholarPubMed
Marcelja, S. (1976). Lipid-mediated protein interaction in membranes. Biochim. biophys. Acta 455, 17.CrossRefGoogle ScholarPubMed
Margulis, L. (1975). Origin of Eucaryotic Cells. New Haven, Ct.: Yale University Press.Google Scholar
Marsh, D. (1985). ESR spin label studies of lipid–protein interactions. In Progress in Protein–Lipid Interactions (ed. Watts, A. and Depont, J. J. H. H. M.), pp. 148172. Amsterdam: Elsevier North Holland Biomedical Press.Google Scholar
Marsh, D., Watts, A. & Knowles, P. F. (1976). Evidence for phase boundary lipids. Permeability of tempo-choline into dimyristoylphosphatidylcholine vesicles at the phase transition. Biochemistry 15, 35703578.CrossRefGoogle ScholarPubMed
Mayer, C., Gröbner, G., Müller, K., Weisz, K. & Kothe, G. (1990). Orientationdependent deuteron spin-lattice relaxation times in bilayer membranes: characterization of the overall lipid motion. Chem. Phys. Lett. 165, 155161.CrossRefGoogle Scholar
Meier, P., Ohmes, E. & Kothe, G. (1986). Multipulse dynamic nuclear magnetic resonance of phospholipid membranes. J. chem. Phys. 85, 35983614.CrossRefGoogle Scholar
Menashe, M., Romero, G., Biltonen, R. L. & Lichtenberg, D. (1986). Hydrolysis of dipalmitoylphosphatidylcholine small unilamellar vesicles by pancreatic phospholipase A2. J. biol. Chem. 261, 53285333.CrossRefGoogle ScholarPubMed
Mendelsohn, R., Davies, M. A., Brauner, J. W., Schuster, H. F. & Dluhy, R. A. (1989). Quantitative determination of conformational disorder in the acyl chains of phospholipid bilayers by infrared spectroscopy. Biochemistry 28, 89348939.CrossRefGoogle ScholarPubMed
Merkel, R., Sackmann, E. & Evans, E. (1989). Molecular friction and epitactic coupling between monolayers in supported bilayers. J. Phys., Paris 50, 15351555.Google Scholar
Miao, L., Fourcade, B., Rao, M. & Wortis, M. (1991). Equilibrium budding and vesiculation in the curvature model of fluid lipid vesicles. Phys. Rev. A (in the Press).CrossRefGoogle ScholarPubMed
Michels, B., Fazel, N. & Cerf, R. (1989). Enhanced fluctuations in small phospholipid bilayer vesicles containing cholesterol. Eur. Biophys. J. 17, 187190.CrossRefGoogle ScholarPubMed
Milner, S. & Safran, S. A. (1987). Dynamic fluctuations of droplet microemulsions and vesicles. Phys. Rev. A 36, 43714379.CrossRefGoogle ScholarPubMed
Mitaku, S. & Date, T. (1982). Anomalies of nanosecond ultrasonic relaxation in the lipid bilayer transition. Biochim. biophys. Acta 688, 411421.CrossRefGoogle ScholarPubMed
Mitaku, S., Jippo, T. & Kataoka, R. (1983). Thermodynamics of the lipid bilayer transition. Pseudocritical behavior. Biophys. J. 42, 137144.CrossRefGoogle Scholar
Mondat, M., Georgallas, A., Pink, D. A. & Zuckermann, M. J. (1984). The thermodynamic properties of mixed phospholipid bilayers: a theoretical analysis. Can. J. Biochem. Cell. Biol. 62, 796802.CrossRefGoogle ScholarPubMed
Morgan, J. (1991). In the beginning …. Scient. Am. 257, (2), 116125.Google Scholar
Morowitz, H. J., Heinz, B. & Deamer, D. W. (1988). The chemical logic of a minimum protocell. Origins of Life 18, 281287.Google ScholarPubMed
Morrow, M. R., Davis, J. H., Sharom, F. J. & Lamb, M. P. (1986). Studies of the interaction of human erythrocyte band 3 with membrane lipids using deuterium nuclear magnetic resonance and differential scanning calorimetry. Biochim. biophys. Acta 858, 1320.CrossRefGoogle ScholarPubMed
Morrow, M. R. & Davis, J. H. (1987). Calorimetric and nuclear magnetic resonance study of the phase behavior of dilauroylphosphatidylcholine/water. Biochim. biophys. Acta 904, 6170.CrossRefGoogle Scholar
Morrow, M. R., Huschilt, J. C. & Davis, J. H. (1985). Simultaneous modeling of phase and calorimetric behavior in an amphiphilic peptide/phospholipid model membrane. Biochemistry 24, 53965406.CrossRefGoogle Scholar
Morrow, M. R., Srinivasan, R. & Grandal, N. (1991). The phase diagram of Dimyristoylphosphatidylcholine and chain-perdeuterated distearoylphosphatidylcholine: A deuterium NMR spectral difference study. Chem. Phys. Lipids 58 (In the press).CrossRefGoogle Scholar
Morrow, M. R. & Whitehead, J. P. (1988). A phenomenological model for lipid–protein bilayers with critical mixing. Biochim. biophys. Acta 941, 271272.CrossRefGoogle ScholarPubMed
Mortensen, K., Pfeiffer, W., Sackmann, E. & Knoll, W. (1988). Structural properties of a phosphatidylcholine-cholesterol system as studied by small-angle neutron scattering: ripple structure and phase diagram. Biochim. biophys. Acta 945, 221245.CrossRefGoogle ScholarPubMed
Mouritsen, O. G. (1983). Studies on the lack of cooperativity in the melting of lipid bilayers. Biochim. biophys. Acta 731, 217221.CrossRefGoogle ScholarPubMed
Mouritsen, O. G. (1986). Physics of biological membranes. In Physics in Living Matter (ed. Baeriswyl, D., Droz, M., Malapinas, A. and Martinoli, P.), pp. 76109. New York: Springer-Verlag.Google Scholar
Mouritsen, O. G. (1990). Computer simulation of cooperative phenomena in lipid membranes. In Molecular Description of Biological Membrane Components by Computer Aided Conformational Analysis (ed. Brasseur, R.), pp. 383. Boca Raton, Florida, U.S.A.: CRC Press.Google Scholar
Mouritsen, O. G. (1991). Theoretical models of phospholipid phase transitions. Chem. Phys. Lipids 57, 178194.CrossRefGoogle ScholarPubMed
Mouritsen, O. G. & Bloom, M. (1984). Mattress model of lipid–protein interactions in membranes. Biophys. J. 46, 141153.CrossRefGoogle ScholarPubMed
Mouritsen, O. G., Boothroyd, A., Harris, R., Jan, N., Lookman, T., MacDonald, L., Pink, D. A. & Zuckermann, M. I. (1983). Computer simulation of the main gelfluid transition of lipid bilayers. J. Chem. Phys. 79, 20272041.CrossRefGoogle Scholar
Mouritsen, O. G., Jorgensen, K., Ipsen, J. H., Zuckermann, M. J. & Cruzeiro-Hansson, L. (1990). Computer simulation of interfacial fluctuation phenomena. Phys. Scr. T 33, 4251.CrossRefGoogle Scholar
Mouritsen, O. G. & Zuckermann, M. J. (1985). Softening of lipid bilayers. Eur. Biophys. J. 12, 7586.CrossRefGoogle ScholarPubMed
Nagle, J. F. (1980). Theory of the main lipid bilayer phase transition. Ann. Rev. Phys. Chem. 31, 157195.CrossRefGoogle Scholar
Needham, D. & Evans, E. (1988). Structure and mechanical properties of giant lipid (DMPC) vesicle bilayers from 20 °C below to 10 °C above the liquid crystal–crystalline phase transition at 24 °C. Biochemistry 27, 82618269.CrossRefGoogle Scholar
Needham, D., McIntosh, T. J. & Evans, E. (1988). Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry 27, 46684673.CrossRefGoogle ScholarPubMed
Needham, D. & Nunn, R. S. (1990). Cohesive properties (elastic deformation and failure) of lipid bilayer membranes containing cholesterol. Biophys. J. 58, 9971009.CrossRefGoogle ScholarPubMed
Nes, W. R. & Nes, W. D. (1980). Lipids in Evolution. New York: Plenum Press.CrossRefGoogle Scholar
Nezil, F. A. & Bloom, M. (1991). Influence of synthetic amphiphilic peptides upon orientational order and bilayer thickness in model membranes. (To be published.)Google Scholar
O'Leary, T. J. (1983). A simple physical model for the effects of cholesterol and polypeptides on lipid membranes. Biochim. biophys. Acta 731, 4753.CrossRefGoogle Scholar
Op den Kamp, J. A. F., Kauertz, M. T. & Van Deenen, L. L. M. (1975). Action of pancreatic phospholipase A2 on phosphatidylcholine bilayers in different physical states. Biochim. biophys. Acta 406, 169177.CrossRefGoogle ScholarPubMed
Opella, S. J. & Stewart, P. L. (1989). Solid-state nuclear magnetic resonance structural studies of proteins. Meth. Enzym. 176, 242275.CrossRefGoogle ScholarPubMed
Ourisson, G., Albrecht, P. & Rohmer, M. (1984). The microbial origin of fossil fuels. Sci. Am. 250, (8), 4451.CrossRefGoogle Scholar
Owicki, J. C. & McConnell, H. M. (1979). Theory of protein–lipid and protein–protein interactions in bilayer membranes. Proc. natn. Acad. Sci. U.S.A. 76, 47504754.CrossRefGoogle ScholarPubMed
Owicki, J. C., Springate, M. W. & McConnell, H. M. (1978). Theoretical study of protein–lipid interactions in bilayer membranes. Proc. natn. Acad. Sci. U.S.A. 75, 16161619.CrossRefGoogle ScholarPubMed
Papahadjopoulos, D., Jacobson, K., Nir, S. & Isac, T. (1973). Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. biophys. Acta 311, 330338.CrossRefGoogle ScholarPubMed
Pates, R. D. & Marsh, D. (1987). Lipid mobility and order in bovine rod outer segment disc membranes. A spin-label study of lipid–protein interactions. Biochemistry 26, 2939.CrossRefGoogle Scholar
Pauls, K. P., MacKay, A. L., Södermann, O., Bloom, M., Tanjea, A. K. & Hodges, R. S. (1985). Dynamic properties of the backbone of an integral membrane polypeptide measured by 2H NMR. Eur. Biophys. J. 12, 111.CrossRefGoogle ScholarPubMed
Pearson, L. T., Chan, S. I., Lewis, B. A. & Engelman, D. M. (1983). Pair distribution functions of bacteriorhodopsin and rhodopsin in model bilayers. Biophys. J. 43, 167174.CrossRefGoogle ScholarPubMed
Peng, Z. -Y., Simplaceanu, V., Dowd, S. & Ho, C. (1989). Effects of cholesterol or Gramicidin on slow and fast motions in oriented bilayers. Proc. natn. Acad. Sci. U.S.A. 86, 87588762.CrossRefGoogle ScholarPubMed
Peng, Z. -Y., Simplaceanu, V., Lowe, I. J. & Ho, C. (1988). Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes. Biophys. J. 54, 8195.CrossRefGoogle ScholarPubMed
Peschke, J., Riegler, J. & Mohwald, H. (1987). Quantitative analysis of membrane distortions induced by mismatch of protein and lipid hydrophobic thickness. Eur. Biophys. J. 14, 385391.CrossRefGoogle Scholar
Pfeiffer, W., Henkel, Th., Sackmann, E., Knoll, W. & Richter, D. (1989). Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. Europhys. Lett. 8, 201206.CrossRefGoogle Scholar
Philips, M. C., Williams, R. M. & Chapman, D. (1969). On the nature of hydrocarbon chain motions in lipid liquid crystals. Chem. Phys. Lipids 3, 234244.CrossRefGoogle Scholar
Pink, D. A. (1981). Theoretical models of phase changes on one- and two-component lipid bilayers. In Biological Membranes (ed. Chapman, D.), pp. 131178. New York: Academic Press.Google Scholar
Pink, D. A. & Carroll, C. E. (1978). A model of cholesterol in lipid bilayers. Phys. Lett. A66, 157160.CrossRefGoogle Scholar
Pink, D. A., Green, T. J. & Chapman, D. (1980). Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. Biochemistry 19, 349356.CrossRefGoogle ScholarPubMed
Pink, D. A., Green, T. J. & Chapman, D. (1981). Raman scattering in bilayers of saturated phosphatidylcholines and cholesterol. Experiment and theory. Biochemistry 20, 66926698.CrossRefGoogle ScholarPubMed
Pink, D. A., Chisholm, D. M. & Chapman, D. (1988). Models of protein lateral arrangements in lipid bilayer membranes. Application to electron spin resonance studies of cytochrome c oxidase. Chem. Phys. Lipids 46, 267277.CrossRefGoogle ScholarPubMed
Pink, D. A., Laidlaw, D. J. & Chisholm, D. M. (1986). Protein lateral movement in lipid bilayers. Monte Carlo simulation studies of its dependence upon attractive protein–protein interactions. Biochim. biophys. Acta 863, 917.CrossRefGoogle Scholar
Pink, D. A., Lookman, T., MacDonald, A. L., Zuckermann, M. J. & Jan, N. (1982). Lateral diffusion of gramicidin S, M-13 coat protein and glycophorin in bilayers of saturated phospholipids. Mean field and monte Carlo studies. Biochim. biophys. Acta 687, 4256.CrossRefGoogle ScholarPubMed
Priest, R. G. (1980). Landau phenomenological theory of one- and two-component phospholipid bilayers. Molec. Cryst. Liq. Cryst. 60, 167184.CrossRefGoogle Scholar
Prosser, R. S., Davis, J. H., Dahlquist, F. W. & Lindorfer, M. A. (1991). 2H nuclear magnetic resonance of the Gramicidin A backbone in a phospholipid bilayer. Biochemistry 30, 46874696.CrossRefGoogle Scholar
Ragan, M. A. (1988). Ribosomal RNA and the major lines of evolution: a perspective. BioSystems 21, 177188.CrossRefGoogle ScholarPubMed
Rançon, Y. & Charvolin, J. (1988). Fluctuations and phase transitions in a lyotropic liquid crystal. J. phys. Chem. 92, 63396344.CrossRefGoogle Scholar
Riegler, J. & Mohwald, H. (1986). Elastic interactions of photosynthetic reaction center proteins affecting phase transitions and protein distributions. Biophys. J. 49, 11111118.CrossRefGoogle ScholarPubMed
Rohmer, M., Bouvier, P. & Ourisson, G. (1979). Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc. natn. Acad. Sci. U.S.A. 76, 847851.CrossRefGoogle ScholarPubMed
Ruggiero, A. & Hudson, B. (1989 a). Critical density fluctuations in lipid bilayers detected by fluorescence lifetime heterogeneity. Biophys. J. 55, 11111124.CrossRefGoogle ScholarPubMed
Ruggiero, A. & Hudson, B. (1989 b). Analysis of the anisotropic decay of trans-parinaric acid in lipid bilayers. Biophys. J. 55, 11251135.CrossRefGoogle ScholarPubMed
Rüppel, D. & Sackmann, E. (1983). On defects in different phases of two-dimensional lipid bilayers. J. Phys., Paris 44, 10251034.Google Scholar
Ryba, N. J. P., Horvath, L. I., Watts, A. & Marsh, D. (1987). Molecular exchange at the lipid–rhodopsin interface: spin-label electron spin resonance studies of rhodopsindimyristoylphosphatidylcholine recombinants. Biochemistry 26, 2939.CrossRefGoogle ScholarPubMed
Sackmann, E. (1983). Physical foundations of the molecular organization and dynamics of membranes. In Biophysics (ed. Hoppe, W., Lohmann, W., Markl, H., and Ziegler, H.), pp. 425457. Berlin: Springer-Verlag.Google Scholar
Sackmann, E. (1984). Physical basis for trigger processes and membrane structures. In Biological Membranes, vol. 5 (ed. Chapman, D.), pp. 105143. London: Academic Press.Google Scholar
Sackmann, E. (1990). Molecular and global structure and dynamics of membranes and lipid bilayers. Can. J. Phys. 68, 9991011.CrossRefGoogle Scholar
Saffman, P. G. (1976). Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73, 593602.CrossRefGoogle Scholar
Saxton, M. J. (1984). Lateral diffusion in an archipelago. The effect of mobile obstacles. Biophysical J. 52, 989997.CrossRefGoogle Scholar
Saxton, M. J. (1987). Lateral diffusion in an archipelago. Distance dependence of the diffusion coefficient. Biophys. J. 56, 615622.CrossRefGoogle Scholar
Schneider, M. D., Jenkins, J. T. & Webb, W. W. (1984). Thermal fluctuations of large quasi-spherical phospholipid vesicles. J. Phys., Paris 45, 14571472.Google Scholar
Schopf, J. W. (ed.) (1983). Earth's Earliest Biosphere: It's Origin and Evolution. Princeton N.J.: Princeton University Press.Google Scholar
Schröder, H. (1977). Aggregation of proteins in membranes. An example of fluctuation-induced interactions in liquid crystals. J. chem. Phys. 67, 16171619.CrossRefGoogle Scholar
Schulz, G. E. & Schirmer, R. H. (1979). Principles of Protein Structure. New York: Springer-Verlag.CrossRefGoogle Scholar
Scott, H. L. (1986). Monte Carlo calculations of order parameter profiles in models of lipid–protein interactions in bilayers. J. chem. Phys. 67, 61226126.Google Scholar
Scott, H. L. (1991). Lipid–cholesterol interactions. Monte Carlo simulations and theory. Biophys. J. 59, 445455.CrossRefGoogle ScholarPubMed
Scott, H. L. & Coe, T. J. (1982). A theoretical study of lipid-protein interactions in membranes. Biophys. J. 42, 219224.CrossRefGoogle Scholar
Scott, H. L. & Kalaskar, S. (1989). Lipid chains and cholesterol in model membranes: a Monte Carlo study. Biochemistry 28, 36873691.CrossRefGoogle ScholarPubMed
Seelig, J. (1977). Deuterium magnetic resonance: theory and applications to lipid membranes. Q. Rev. Biophys. 10, 353418.CrossRefGoogle Scholar
Seelig, J. (1981). Physical properties of model membranes and biological membranes. In Membranes and Intermolecular Communications (ed. Balian, R., Chabre, M. and Devaux, P. F.), pp. 1578. Amsterdam: Elsevier/North-Holland.Google Scholar
Seelig, J. & Seelig, A. (1977). Effect of a single cis bond on the structure of a phospholipid bilayer. Biochemistry 16, 4550.CrossRefGoogle ScholarPubMed
Seelig, J. & Seelig, A. (1980). Lipid conformation in model membranes. Q. Rev. Biophys. 13, 1964.CrossRefGoogle ScholarPubMed
Seifert, U., Berndl, K. & Lipowsky, R. (1991). Shape transformations of vesicles: phase diagrams for spontaneous curvature and bilayer coupling model. Phys. Rev. A (in the Press).CrossRefGoogle Scholar
Shinitzky, M. (1984). Membrane fluidity and cellular functions. In Physiology of Membrane Fluidity, vol. 1 (ed. Shinitzky, M.), pp. 151. Boca Raton, Florida: CRC Press.Google Scholar
Silvius, J. R. (1986). Solid- and liquid-phase equilibria in phosphatidylcholine/phosphatidylethanolamine mixtures. A calorimetric study. Biochim. biophys. Acta 857, 217228.CrossRefGoogle ScholarPubMed
Siminovitch, D. J., Ruocco, M. J., Olejniczak, E. T., Das Gupta, S. K. & Griffin, R. G. (1988). Anisotropic 2H NMR spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes. Biophys. J. 54, 373381.CrossRefGoogle ScholarPubMed
Singer, S. J. (1974). The molecular organization of membranes. A. Rev. Biochem. 43, 805833.CrossRefGoogle ScholarPubMed
Singer, S. J. & Nicolson, G. L. (1972). The fluid mosaic model of cell membranes. Science, Wash. 175, 720731.CrossRefGoogle ScholarPubMed
Slater, G. & Caillé, A. (1981). A new theoretical approach to the effects of active molecules on the lipid bilayer properties: the cholesterol problem. Phys. Lett. A 86, 256258.CrossRefGoogle Scholar
Smith, S. O. & Griffin, R. G. (1988). High resolution solid-state NMR of proteins. A. Rev. phys. Chem. 39, 511535.CrossRefGoogle ScholarPubMed
Snyder, B. & Freire, E. (1980). Compositional domain structure in phosphatidylcholine–cholesterol and sphingomyelin–cholesterol bilayers. Proc. natn. Acad. Sci. U.S.A. 77, 40554059.CrossRefGoogle ScholarPubMed
Sperotto, M. M., Ipsen, J. H. & Mouritsen, O. G. (1989). Theory of protein-induced lateral separation in lipid membranes. Cell Biophys. 14, 7985.CrossRefGoogle ScholarPubMed
Sperotto, M. M. & Mouritsen, O. G. (1988). Dependence of lipid membrane phase transition on the mismatch of protein and lipid hydrophobic thickness. Biophys. J. 16, 110.Google Scholar
Sperotto, M. M. & Mouritsen, O. G. (1991 a). Monte Carlo simulation studies of lipid order parameter profiles in lipid membranes. Biophys. J. 59, 361–276.CrossRefGoogle Scholar
Sperotto, M. M. & Mouritsen, O. G. (1991 b). Mean field and Monte Carlo simulation studies of the lateral distribution of proteins in membranes. Eur. Biophys. J. 19, 157168.CrossRefGoogle ScholarPubMed
Speyer, J. B., Weber, R. T., Das Gupta, S. K. & Griffin, R. G. (1989). Anisotropic 2H NMR spin-lattice relaxation in Lα-phase Cerebroside bilayers. Biochemistry 28, 95699574.CrossRefGoogle Scholar
Sternin, E., Bloom, M. & MacKay, A. L. (1983). De-pake-ing of NMR spectra. J. magn. Res. 55, 274282.Google Scholar
Stockton, G. W., Polnaszek, C. F., Tulloch, A. P., Hasan, F. & Smith, I. C. P. (1976). Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labelled lipids. Biochemistry 15, 954966.CrossRefGoogle Scholar
Stockton, G. W., Johnson, K. G., Butler, K. W., Tulloch, A. P., Boulanger, Y., Smith, I. C. P., Davis, J. H. & Bloom, M. (1977). Deuterium NMR study of lipid organisation in Acholeplasma laidlawii membranes. Nature, Lond. 269, 267268.CrossRefGoogle Scholar
Stohrer, J., Gröbner, G., Reimer, D., Weisz, K., Mayer, C. & Kothe, G. (1991). Collective lipid motions in bilayer membranes studied by transverse deuteron spin relaxation. J. Chem. Phys. (In the press).CrossRefGoogle Scholar
Sugar, I. P. & Monticelli, G. (1983). Landau theory of two-component mixtures. I. Phosphatidylcholine/phosphatidylethanolamine mixtures. Biophys. Chem. 18, 281289.CrossRefGoogle ScholarPubMed
Tanford, C. (1980). The Hydrophobic Effect, 2nd ed.New York: John Wiley.Google Scholar
Tate, M. W. & Gruner, S. M. (1989). Temperature dependence of the structural dimensions of the inverted hexagonal (H11) phase of phosphatidylethanolamine-containing membranes. Biochemistry 28, 42454253.CrossRefGoogle Scholar
Taylor, M. O. & Smith, I. C. P. (1980). The fidelity of response by nitroxide spin probes to changes in membrane organization. The condensing effect of cholesterol. Biochim. biophys. Acta 945, 221245.Google Scholar
Tessier-Lavigne, M., Boothroyd, A., Zuckermann, M. J. & Pink, D. A. (1982). Lipid-mediated interactions between intrinsic molecules in bilayer membranes. J. chem. Phys. 76, 45874599.CrossRefGoogle Scholar
Thewalt, J. & Bloom, M. (1991). Phase diagram for membranes composed of mixtures of cholesterol and mono-unsaturated phospholipids. (To be published.)Google Scholar
Thurmond, R. L., Dodd, S. W. & Brown, M. F. (1991). Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Biophys. J. 59, 108113.CrossRefGoogle ScholarPubMed
Van Hove, L. (1954). Correlations in space and time Born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249262.CrossRefGoogle Scholar
Van Osdol, W. W., Biltonen, R. L. & Johnson, M. L. (1989). Measuring the kinetics of membrane phase transitions. J. biochem. biophys. Meth. 20, 146.CrossRefGoogle ScholarPubMed
Van der Ploeg, P. & Berendsen, H. J. C. (1983). Molecular dynamics of a bilayer membrane. Molec. Phys. 49, 233248.CrossRefGoogle Scholar
Vist, M. R. & Davis, J. H. (1990). Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H NMR and differential scanning calorimetry. Biochemistry 29, 451464.CrossRefGoogle ScholarPubMed
Wallace, B. A. & Ravikumar, K. (1988). The Gramicidin pore: crystal structure of a cesium complex. Science, Wash. 241, 182187.CrossRefGoogle ScholarPubMed
Watnick, P. A., Dea, P. & Chan, S. J. (1990). Characterization of the transverse relaxation rates in lipid bilayers. Proc. natn. Acad. Sci. U.S.A. 87, 20822086.CrossRefGoogle ScholarPubMed
Wefing, S., Kaufmann, S. & Spiess, H. W. II. (1988). The dynamic evolution of two-time distribution functions, J. chem. Phys. 89, 12341244.CrossRefGoogle Scholar
Wefing, S. & Spiess, H. W. (1988). Two-dimensional exchange NMR of powder samples. I. Two-time distribution functions. J. chem. Phys. 89, 12191233.CrossRefGoogle Scholar
Weiss, M. S., Kreusch, A., Schiltz, E., Nestel, U., Welte, W., Weckesser, J. & Schulz, G. E. (1991). The structure of porin from Rhodobacter capsulatus at 1·8 Å resolution. FEBS Lett. 280, 379382.CrossRefGoogle ScholarPubMed
Woese, C. R. (1987). Bacterial evolution. Microbiol. Rev. 51, 221271.CrossRefGoogle ScholarPubMed
Woese, C. R. & Wolfe, R. S. (1985). Archaebacteria: the Urkingdom. In The Bacteria. Vol. 8. Archaebacteria (ed. Woese, C. R. and Wolfe, R. S.), pp. 459497. Orlando, Fla.: Academic Press.Google Scholar
Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. New York: John Wiley.CrossRefGoogle Scholar
Wüthrich, K. (1989). Protein structure determination in solution by Nuclear Magnetic Resonance spectroscopy. Science, Wash. 241, 4550.CrossRefGoogle Scholar
, Y.-H., Gietzen, K., Galla, H. -J. & Sackmann, E. (1983). A simple assay to study protein-mediated lipid exchange by fluorescence polarization. Biochem. J. 209, 257260.CrossRefGoogle ScholarPubMed
Yeagle, P. L. (1985 a). Cholesterol and the cell membrane. Biochim. biophys. Acta 822, 267287.CrossRefGoogle ScholarPubMed
Yeagle, P. L. (1985 b). Lanosterol and cholesterol have different effects on phospholipid acyl chain ordering. Biochim. biophys. Acta 815, 3336.CrossRefGoogle ScholarPubMed
Yeung, A. K. & Evans, E. (1991). Monolayer coupling in the bilayer structure and its role in surface undulations. (To be published.)Google Scholar
Zaccai, G., Büldt, G., Seelig, A. & Seelig, J. (1979). Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental disorder. J. molec. Biol. 134, 693706.CrossRefGoogle ScholarPubMed
Zuckermann, M. J. & Mouritsen, O. G. (1987). The effects of acyl chain ordering and crystallization on the main phase transition of wet lipid bilayers. Eur. Biophys. J. 15, 7786.CrossRefGoogle Scholar