Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T16:05:32.709Z Has data issue: false hasContentIssue false

Biophysics of cell separations

Published online by Cambridge University Press:  17 March 2009

H. C. Mel
Affiliation:
Division of Medical Physics and Donner Laboratory, University of California, Berkeley, California 94720
D. W. Ross
Affiliation:
Division of Medical Physics and Donner Laboratory, University of California, Berkeley, California 94720

Extract

To the Chemist, it has long been second nature to work with separate, purified substances. Biochemists and molecular biologists have now largely achieved the same working position, with their powerful separation techniques of ultracentrifugation, electrophoresis, chromatography and the like. For the cell biologists, it is a much more recent phenomenon that widespread attention is being directed towards quantitative measurement of properties in isolated, homogeneous cell types. The richness and diversity of cell systems beg for cleverness on the part of the experimenter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albertsson, Per-Åke (1960). Partition of Cell Particles and Macromolecules. New York: J. Wiley and Sons.Google Scholar
Ambrose, E. J. (1965). Cell Electrophoresis. Boston, Mass.: Little, Brown and Co.Google Scholar
Anderson, N. G. (1968). Preparative particle separation in density gradients. Q. Rev. Biophys 1, 217.CrossRefGoogle Scholar
Bier, M. (1959). Electrophoresis. New York: Academic Press.Google Scholar
Boltz, R. C., Todd, P., Streibel, M. J. & Louie, M. K. (1973). Preparative electrophoresis of living mammalian cells in a stationary Ficoll gradient. Preparative Biochem. 3, 383.CrossRefGoogle Scholar
Boone, C. W., Harell, G. S. & Bond, H. E. (1968). The resolution of mixtures of viable mammalian cells into homogeneous fractions by zonal centrifugation. J. Cell Biol. 36, 369.CrossRefGoogle ScholarPubMed
Boyum, A. (1964). Separation of white blood cells. Nature, Lond. 204, 793.CrossRefGoogle ScholarPubMed
Brinton, C. C. Jr. & Lauffer, M. A. (1959). The electrophoresis of viruses, bacteria, and cells and the microscope method of electrophoresis. In Electrophoresis (ed. Bier, M.), pp. 427–92. New York: Academic Press.Google Scholar
Fulwyler, M. J. (1965). Electronic separation of biological cells by volume. Science, N.Y. 150, 910.CrossRefGoogle ScholarPubMed
Fulwyler, M. J., Glascock, R. B., Hiebert, R. D., & Johnson, N. M. (1969). Device which separates minute particles according to electronically sensed volume. Rev. Scient. Instrum. 40, 42.CrossRefGoogle ScholarPubMed
Furchtgott, R. F. & Ponder, E. (1941) J. gen Physiol. 24, 447.CrossRefGoogle Scholar
Glaser, R. G. (1963). Electric charge and surface properties. University of California. UCRL 10898.Google Scholar
Goldsmith, H. L. & Mason, S. G. (1971). Model experiments in hemodynamics. IV. In Theoretical and Clinical Hemorrheology (ed. Harbert, H. H. et al. ), pp. 4759. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hannig, K. (1971). Free-flow electrophoresis: A technique for continuous preparative and analytical separation. In Methods in Microbiology, p. 513. New York: Academic Press.Google Scholar
Haydon, D. A. (1964). The electrical double layer and electrokinetic phenomena. Recent Progress in Surface Science (ed. Danielli, J. V.), p. 94. New York: Academic Press.Google Scholar
Henry, D. C. (1931). Proc. R. Soc. Lond. A 133, 106.Google Scholar
Hulett, H. R., Bonner, W. A., Barrett, J. & Herzenberg, A. (1969). Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science, N. Y. 166, 747.Google Scholar
Judson, G., Jones, A., Kellogg, R., Buckner, D., Eisel, R., Perry, S. & Greenough, W. (1968). Closed-continuous flow centrifuge. Nature, Lond. 217, 816.CrossRefGoogle ScholarPubMed
Kolin, A. (1958) Rapid electrophoresis in density gradients combined with pH, conductivity and/or conductivity gradients. In Methods of Biochemical Analysis, vol. 6 (ed. Glick, D.), pp. 259–88. New York: Interscience.CrossRefGoogle Scholar
Kolin, A. (1960). Continuous electrophoretic fractionation stabilized by continuous E.M. rotation. P.N.A.S. 46 509.CrossRefGoogle Scholar
Kolin, A. (1966). Helical path electrophoresis in vertical fluid sheets. P.N.A.S. 56, 1051.CrossRefGoogle Scholar
Kolin, A. (1970). pH gradient electrophoresis. In Methods In Medical Research, vol. 12 (ed. Olson, R. E.), pp. 326–58. Chicago: Yearbook Medical Publishers.Google Scholar
LaCelle, P. L. (1970). Alteration of membrane deformability in hemolytic anemias. Seminars in Hematology 7, 355.Google ScholarPubMed
Landel, A. M., Aloni, Y., Raftery, M. A. & Attardi, G. (1973). Electrofocusing analysis of HeLa cell metaphase chromosomes. Biochem. 11, 1654–63.CrossRefGoogle Scholar
MacDonald, H. R. & Miller, R. G. (1970). Synchronization of mouse L-cells by a velocity sedimentation technique. Biophys. J. 10, 834.CrossRefGoogle ScholarPubMed
Mehrishi, J. N. (1972). Molecular aspects of the mammalian cell surface. Prog. Biophys. Mol. Biol. 25, I.CrossRefGoogle ScholarPubMed
Mel, H. C. (1959). New method of continuous free boundary electrophoresis. J. chem. Phys. 31, 559.CrossRefGoogle Scholar
Mel, H. C. (1960 a). Biological mixtures, some biophysical problems, and the stable-flow-free boundary method. University of California, UCRL 9108, pp. 136.Google Scholar
Mel, H. C. (1960 b). Electrophoretic interaction studies by the stable flow free boundary method. Science, N.Y., 132, 1255.CrossRefGoogle Scholar
Mel, H. C. (1964 a). Stable-flow free boundary migration and fractionation of cell mixtures. J. theor. Biol. 6, 195.Google Scholar
Mel, H. C. (1964 b). Stable-flow free boundary migration and fractionation of cell mixtures. J. theor. Biol. 6, 181.CrossRefGoogle ScholarPubMed
Mel, H. C. (1964 c). Stable-flow free boundary migration and fractionation of cell mixtures. J. theor. Biol. 6, 307.CrossRefGoogle ScholarPubMed
Mel, H. C. (1970). Stable-flow free boundary cell fractionation as an approach to the study of hematopoietic disorders. In Proc. 8th Annual Hanford Biology Symposium, 1968 (ed. Clarke, W. J. et al. ), pp. 665–86. Oak Ridge, Tenn.Google Scholar
Miller, R. G. & Phillips, R. A. (1969). Separation of cells by velocity sedimentation. J. cell. Physiol. 73, 191.Google Scholar
Noble, P. S. & Mel, H. C. (1966). Electrophoretic studies of light induced charge in spinach chloroplasts. Archs. Biochem. Biophys. 113, 695702.CrossRefGoogle Scholar
Overbeek, J. TH. G. & Wiersema, P. H. (1967). The interpretation of electrophoretic mobilities. In Electrophoresis, vol. II (ed. Bier, M.), pp. 12. New York: Academic Press.Google Scholar
Philpot, J. ST L. (1973). Apparatus for continuous flow preparative electrophoresis. In Methodological Developments in Biochemistry, Preparative Techniques, vol. II (ed. Reid, G.), pp. 81-5. London: Longman.Google Scholar
Pistenma, D. A. (1970). Biophysical studies of spermatozoa. Ph.D. Thesis. University of California, UCRL 20219, pp. 103–5, 261–3.CrossRefGoogle Scholar
Pohl, H. A. (1973). Biophysical aspects of dielectrophoresis. J. Biol. Phys. 1, I.CrossRefGoogle Scholar
Segre, G. & Silberberg, A. (1962). Behaviour of macroscopic rigid spheres in Poiseuille flow. J. Fluid. Mech. 14, 136.CrossRefGoogle Scholar
Shaw, D. J. (1969) Electrophoresis. New York: Academic Press.Google Scholar
Shortman, K., Williams, N., Jackson, H., Russell, P., Byrt, P. & Diener, E. (1971). The separation of different cell classes from lymphoid organs. IV. The separation of lymphocytes from phagocytes on glass bead columns, and its effect on subpopulations of lymphocytes and antibody-forming cells. J. Cell Biol. 48, 566.Google Scholar
Strickler, A. & Sachs, T. (1973). Focusing in continuous flow electrophoresis systems by electrical control of effective cell wall zeta potentials. Ann. N.Y. Acad. Sci. 209, 497.CrossRefGoogle ScholarPubMed
Svensson, H. (1962). Isoelectric fractionation, analysis, and characterization of amphylytes in natural pH gradients, III. Arch. Biochem. Suppl. 1, 132.Google Scholar
Tenforde, T. (1970). Microelectrophoretic studies on the surface chemistry of erythrocytes. Adv. biol. med. Phys. 13, 43.CrossRefGoogle ScholarPubMed
Tippetts, R. D., Mel, H. C. & Nichols, A. V. (1967). Stable-flow free- boundary (STAFLO) electrophoresis: three dimensional fluid flow properties and applications to lipoprotein studies. In Chemical Engineering in Medicine and Biology (ed. Hershey, D.), pp. 505–40. New York: Plenum Press.CrossRefGoogle Scholar
VanDilla, M. A. Dilla, M. A., Fulwyler, M. J. & Boone, I. U. (1967). Volume distribution and separation of normal human leucocytes. P.S.E.B.M. 125, 367.Google Scholar
Weiss, L. (1969). The cell periphery. Int. Rev. Cytol. 26, 63.Google Scholar
Williams, R. R. & Waterman, R. E. (1929). Electrodialysis as means of characterized ampholytes. Proc. Soc. Exp. Biol. Med. 27, 56.Google Scholar