Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T11:45:30.880Z Has data issue: false hasContentIssue false

Microspectrophotometry of visual pigments

Published online by Cambridge University Press:  17 March 2009

Stanley D. Carlson
Affiliation:
Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.

Abstract

Visual pigments are embedded in the disc membranes of the outer segments of vertebrate rods and cones and in the microvilli of invertebrate visual cells. The pigment molecule in both is a most fascinating aggregate of known (the ubiquitous II-cis isomer of vitamin A1 or A2-aldehyde = retinal1 or 2; Hubbard & Wald, 1952) covalently bonded to the unknown (a protein termed opsin) (Anderson, Hoffman & Hall, 1971). This conjugated molecule is called rhodopsin or dehydrorhodopsin (porphryopsin) when the prosthetic portion is retinall or 2 respectively. So sensitive is this sterically hindered, bent and twisted molecule to light that absorption of one photon can initiate its isomerization to the all trans form. This conformational change is but one (but the best known) of the factors leading to receptor membrane changes ushering in the visual impulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. E. (1970). Is retinal-phosphatidyl ethanolamine the chromophore of rhodopsin? Nature, Lond. 227, 954–5.CrossRefGoogle ScholarPubMed
Anderson, R. E., Hoffman, R. T. & Hall, M. O. (1971). Linkage of retinal to opsin. Nature, New Biol., Lond. 229, 249–50.Google Scholar
Bitensky, M. W., Gorman, R. E. & Miller, W. H. (1971). Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc. natn. Acad. Sci. U.S.A. 68, 561–2.CrossRefGoogle ScholarPubMed
Blasie, J. K. (1972). The location of photopigment molecules in the cross- section of frog retinal receptor disk membranes. Biophys. J. 12, 191.CrossRefGoogle ScholarPubMed
Blasie, J. K., Worthington, C. R. & Dewey, M. M. (1969). Molecular localization of frog retinal receptor photopigment by electron microscopy and low-angle X-ray diffraction. J. molec. Biol. 39, 407–16.CrossRefGoogle ScholarPubMed
Blasie, J. K. & Worthington, C. R. (1969). Planar liquid-like arrangement of photopigment molecules in frog retinal disc membrane. J. molec. Biol. 39, 417–39.CrossRefGoogle Scholar
Blaurock, A. E. (1971). Structure of the retinal membrane containing the visual pigment. IUPS-ISCERG Symp., Brighton, U.K. Abstr. in Vision Res. II, 1191.CrossRefGoogle Scholar
Blaurock, A. E. & Wilkins, M. H. F. (1969). Structure of frog photoreceptor membranes. Nature Lond. 223, 906–9.CrossRefGoogle ScholarPubMed
Boëthius, J., Carlson, S. D., Höglund, G. & Struwe, G. (1968). Spectral efficiency of single photoreceptor cells of the moth (Manduca sexta). Acta physiol. scand. 74, 36–7A, Abstr.CrossRefGoogle Scholar
Bownds, D. (1967). Site of attachment of retinal in rhodopsin. Nature, Lond. 216, 1178–80.CrossRefGoogle ScholarPubMed
Bownds, D., Dawes, J., Miller, J. & Stahlman, M. (1972). Phosphorylation of frog photoreceptor membranes induced by light. Nature New Biol. Lond. 237, 125–7.CrossRefGoogle ScholarPubMed
Bownds, D., Gordon-Walker, A., Gaide-Huguenin, A.-C. & Robinson, W. (1971). Characterization and analysis of frog photoreceptor membranes. J. gen. Physiol. 58, 225–37.CrossRefGoogle ScholarPubMed
Bridges, C. D. B. (1956). The visual pigments of the rainbow trout. (Salmo irideus). J. Phsyiol., Lond. 134, 620–9.CrossRefGoogle ScholarPubMed
Bridges, C. D. B. (1970). Reversible visual pigment changes in tadpoles exposed to light and darkness. Nature, Lond. 227, 956–7.CrossRefGoogle ScholarPubMed
Bridges, C. D. B. (1971). The molar absorbance coefficient of rhodopsin. Vision Res. II, 841–8.CrossRefGoogle Scholar
Briggs, M. H. (1961). Retinene1 in insect tissues. Nature, Lond. 182, 874–5.CrossRefGoogle Scholar
Brown, P. K. (1961). A system for microspectrophotometry employing a commercial recording spectrophotometer. J. Opt. Soc. Am. 51, 1000–8.CrossRefGoogle Scholar
Brown, P. K. & Wald, G. (1963). Visual pigments in human and monkey retinas. Nature, Lond. 200, 3743.CrossRefGoogle ScholarPubMed
Brown, P. K. & Wald, G. (1964). Visual pigments in single rods and cones of human retina. Science, N.Y. 144, 4552.CrossRefGoogle ScholarPubMed
Bruno, M. S. (1971). Microspectrophotometry of isolated crustacean rhabdoms. Ph.D. Thesis, Harvard University, Cambridge, Mass.Google Scholar
Burkhardt, D. (1962). Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol. 16, 86109.Google Scholar
Burkhardt, D. & Autrum, H. (1960). Die Belichtungspotentiale einzelner Sehzellen von Callzphora erythrocephale Meig. Abstr. in Engi. Z. Naturf. 15b, 612–16.CrossRefGoogle Scholar
Carlson, S. D. & Philipson, B. (1972). Microspectrophotometry of the dioptric apparatus and compound rhabdom of the moth (Manduca sexta) eye. J. Insect Physiology. (In the Press.)CrossRefGoogle Scholar
Caspersson, T. (1940). Methods for the determination of the absorption spectra of cell structure. Jl R. microsc. Soc. 60, 825.CrossRefGoogle Scholar
Caspersson, T. & Lomarkka, G. (1967). Microscale spectroscopy. In Instrumentation in Biochemistry, pp. 25–40. London: Academic Press.Google Scholar
Chance, B., Perry, R., Åkerman, L. & Thorell, B. (1959). Highly sensitive recording microspectrophotometer. Rev. scient. Instrum. 830, 735.CrossRefGoogle Scholar
Cone, R. A. (1972). Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biol. Lond. 236, 3943.CrossRefGoogle ScholarPubMed
Cone, R. A. & Brown, P. K. (1969). Spontaneous regeneration of rhodopsin in the isolated rat retina. Nature, Lond. 221, 818–20.CrossRefGoogle ScholarPubMed
Cone, R. A. & Korenbrot, J. I. (1971). Thermal motion of rhodopsin and the control of Na+ permeability. IUPS-ISCERG Symp., Brighton, U.K. Abstr. Vision Res. II, 1192–3.Google Scholar
Crescitelli, F. (1965). The spectral sensitivity and visual pigment content of the retina of Gekko gekko. In Colour Vision: Physiology and Experimental Psychology. (ed. de Reuck, A. V. S.), pp. 301–24. London: J. and A. Churchill Ltd.Google Scholar
Dartnall, H. J. A. (1963). The interpretation of spectral sensitivity curves. Br. Med. Bull. 9, 2430.CrossRefGoogle Scholar
Dartnall, H. J. A. (1970). Some recent work on visual pigments. Br. Med. Bull. 26, 175–8.CrossRefGoogle ScholarPubMed
Dobelle, W. H., Marks, W. B. & MacNichol, E. F. Jr (1969). Visual pigment density in single primate foveal cones. Science, N. Y. 166, 1508–10.CrossRefGoogle ScholarPubMed
Dowling, J. E. & Werblin, F. S. (1969). Organization of retina of the mudpuppy, Necturus maculosus I. Synaptic structure. J. Neurophysiol. 32, 315–38.CrossRefGoogle ScholarPubMed
Dratz, E. A., Gaw, J. A., Schwartz, S. & Ching, Wei-Mei (1972). Molecular organization of photoreceptor membranes of rod outer segments. Nature New Biol. Lond. 237, 99102.CrossRefGoogle ScholarPubMed
Eguchi, E., Naka, K. & Kuwabara, M. (1962). The development of the rhabdom and the appearance of the electrical response in the insect eye. J. gen. Physiol. 46, 143–57.CrossRefGoogle ScholarPubMed
Eguchi, E. & Waterman, T. H. (1967). Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation. Z. Zellforsch mikrosk. Anat. 79, 209–29.CrossRefGoogle ScholarPubMed
Enoch, J. M. (1966). Retinal microspectrophotometry. J. opt. Soc. Am. 56, 833–5.CrossRefGoogle ScholarPubMed
Entine, G., Liebman, P. A. & Storey, B. T. (1968). Ubiquinone in the retina. Vision Res. 8, 215–19.CrossRefGoogle ScholarPubMed
Fernández, H. (1965). A survey of the visual pigments of decapod crustaceae of South Florida. Ph.D. Thesis, University of Miami, Coral Gables, Florida.Google Scholar
Gilardi, R., Karle, I. L. & Karle, J. (1971). Crystal structure of the visual chromophores, II-cis and all-trans retinal. Nature, Lond. 232, 187–9.CrossRefGoogle Scholar
Gogala, M. (1967). Die spektrale Empfindlichkeit der Doppelaugen von Ascalaphus macaronius Scop. (Neuroptera, Ascalaphidae). Z. vergl. Physiol. 57, 232–43.CrossRefGoogle Scholar
Gogala, M., Hamdorf, K. & Schwemer, J. (1970). UV-Sehfarbstoff bei Insekten. Z. vergi. Physiol. 70, 410–13.CrossRefGoogle Scholar
Goldsmith, T. H. (1958). The visual system of the honeybee. Proc. natn Acad. Sci., U.S.A. 44, 123–6.CrossRefGoogle ScholarPubMed
Goldsmith, T. H. (1964). The visual system of insects. In The Physiology of Insecta, vol. I (ed. Rockstein, M.), pp. 397462. New York: Academic Press.Google Scholar
Goldsmith, T. H. (1972). The natural history of invertebrate visual pigments. Chap. 2 in Handbook of Sensory Physiology. Vol. 7 (ed. Dartnall, H. J. A.). The Photochemistry of Vision. Chap. 17, pp. 685719. Berlin—Heidelberg— New York: Springer-Verlag.Google Scholar
Goldsmith, T. H., Dizon, A. E. & Fernańdez, H. R. (1968). Microspectrophotometry of photoreceptor organelles from eyes of the prawn. Paleomonetes. Science, N. Y. 161, 468–70.CrossRefGoogle ScholarPubMed
Goldsmith, T. H. & Fernańdez, H. R. (1966). Some photochemical and physiological aspects of visual excitation in compound eyes. In The Functional Organization of the Compound Eye (ed. Bernhard, C. G.), pp. 125–43. New York: Pergamon Press.Google Scholar
Goldsmith, T. H. & Fernańdez, H. R. (1968). Comparative studies of crustacean spectral sensitivity. Z. vergl. Physiol. 60, 156–75.CrossRefGoogle Scholar
Goldsmith, T. H. & Philpott, D. E. (1957). The microstructure of the compound eyes of insects. J. biophys. biochem. Cytol. 3, 429–40.CrossRefGoogle ScholarPubMed
Goldsmith, T. H. & Warner, L. T. (1964). Vitamin A in the vision of insects. J. gen. Physiol. 47, 433–41.CrossRefGoogle ScholarPubMed
Hagins, W. W., Zonana, H. V. & Adams, R. G. (1962). Local membrane current in the outer segments of squid photoreceptors. Nature, Lond. 194, 844947.CrossRefGoogle ScholarPubMed
Hamdorf, K., Höglund, G. & Langer, H. (1971). Microspectrophotometry on the retinula of the moth, Deilephila elpenor. Abstr. in English. Paper presented to Deutsche Zoologische Gesellschaft, Sept. (In the Press.)Google Scholar
Hamdorf, K., Schwemer, J. & Gogala, M. (1971). Insect visual pigment sensitive to ultraviolet light. Nature, Lond. 231, 458–9.CrossRefGoogle ScholarPubMed
Hanaocka, T. & Fujimoto, K. (1957). Absorption spectrum of a single cone in carp retina. Jap. J. Physiol. 7, 276–85.CrossRefGoogle Scholar
Hays, D. & Goldsmith, T. H. (1969). Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata. Z. vergi. Physiol. 65, 218–32.CrossRefGoogle Scholar
Höglund, G. & Struwe, G. (1970). Pigment migration and spectral sensitivity in the compound eye of moth. Z. vergi. Physiol. 67, 229–37.CrossRefGoogle Scholar
Horridge, G. A. (1967). Perception of polarization plane, colour and movement in two dimensions by the crab. Carcinus. Z. vergl. Physiol. 55, 207–24.CrossRefGoogle Scholar
Hubbard, R. & Wald, G. (1952). Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J. gen. Physiol. 36, 269315.CrossRefGoogle ScholarPubMed
Incardona, N. L., Miles, K. & Baker, B. N. (1971). Sedimentation of bovine rhodopsin-digitonin micelles. Nature New Biol., Lond. 229, 250–2.CrossRefGoogle ScholarPubMed
Kampa, E. M. (1955). Euphausiopsin, a new photosensitive pigment from the eyes of euphusiid crustaceans. Nature, Lond. 175, 996997.CrossRefGoogle Scholar
Kennedy, D. & Bruno, M. S. (1961). The spectral sensitivity of crayfish and lobster vision. J. gen. Physiol. 44, 1089–102.CrossRefGoogle ScholarPubMed
Kuhn, H. & Dreyer, W. J. (1972). Light dependant phosphorylation of rhodopsin by ATP. FEBS Lett. 20, 16.CrossRefGoogle ScholarPubMed
Langer, H. & Thorell, B. (1966a). Microspectrophotometry of single rhabdomeres in the insect eye. Expl Cell Res. 41, 673–7.CrossRefGoogle ScholarPubMed
Langer, H. & Thorell, B. (1966b). Microspectrophotometric assay of visual pigments in single rhabdomeres of the insect eye. In The Functional Organization of the Compound Eye (ed. Bernhard, C. G.), pp. 145–9. Oxford: Pergamon Press.Google Scholar
Liebman, P. A. (1962). In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161–78.CrossRefGoogle ScholarPubMed
Liebman, P. A. (1969). Microspectrophotometry of retinal cells. Ann. N.Y. Acad. Sci. 157, 250–64.CrossRefGoogle Scholar
Liebman, P. A. (1972). Microspectrophotometry of photoreceptors. Chap. 12, in Handbook of Sensory Physiology. Vol. 7 (ed. Dartnall, H. J. A.). The Photochemistry of Vision. Chap. 12, pp. 481528. Berlin—Heidelberg—New York: Springer-Verlag.Google Scholar
Liebman, P. A. & Entine, G. (1964). Sensitive low-light level microspectrophotometer detection of photosensitive pigments of retinal cones. J. opt. Soc. Am. 54, 1451–9.CrossRefGoogle ScholarPubMed
Liebman, P. A. & Entine, G. (1968 a). Visual pigments of frog and tadpole. Vision Res. 8, 761–75.CrossRefGoogle ScholarPubMed
Liebman, P. A. & Entine, G. (1968 b). Cyanopsin, a visual pigment of retinal origin. Nature, Lond. 216, 501–3.CrossRefGoogle Scholar
Liebman, P. A. & Granda, A. M. (1971). Microspectrophotometric measurements of visual pigments in two species of turtle, Pseudemys scripta and Chelonia mydas. Vision Res. II, 105–14.CrossRefGoogle Scholar
Lythgoe, R. J. (1937). The absorption spectrum of visual purple and of indicator yellow. J. Physiol., Lond. 89, 331–58.CrossRefGoogle Scholar
MacNichol, E. F. Jr (1964 a). Retinal mechanisms of color vision. Vision Res. 4, 119–33.CrossRefGoogle ScholarPubMed
MacNichol, E. F. Jr (1964 b). Three-pigment color vision. Scient. Am. 211, 4856.CrossRefGoogle ScholarPubMed
Marks, W. B. (1965). Visual pigments of single goldfish cones. J. Physiol. Lond. 178, 1432.CrossRefGoogle ScholarPubMed
Marks, W. B., Dobelle, W. H. & MacNichol, E. F. Jr (1964). Visual pigments of single primate cones. Science, N.Y. 143, 1181–3.CrossRefGoogle ScholarPubMed
Miller, W. H. (1972). Personal communication.Google Scholar
Miller, W. H., Gorman, R. E. & Bitensky, M. W. (1971). Cyclic adenosine monophosphate: function in photoreceptors. Science, N. Y. 174, 295–7.CrossRefGoogle ScholarPubMed
Murray, G. C. (1966). Intracellular absorption difference spectrum of Limulus extra-ocular photolabile pigment. Science, N.Y. 54, 1182–3.CrossRefGoogle Scholar
Picard, R. G. (1949). Applications for normalizing amplifier Type EMS-4A (AS-6113). RCA Engineering Memo.Google Scholar
Poincelot, R. P., Millar, P. G., Kimbel, R. L. Jr & Abrahanson, E. W. (1969). Lipid to protein chromophore transfer in the photolysis of visual pigments. Nature, Lond. 221, 256–7CrossRefGoogle ScholarPubMed
Robinson, W. E., Gordon-Walker, A., Bownds, D. (1972). Molecular weight of frog rhodopsin. Nature New Biol. 235, 112114.CrossRefGoogle ScholarPubMed
Shaw, S. R. (1969). Sense-cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res. 9, 1031–40.CrossRefGoogle ScholarPubMed
Sillman, A. J. (1969). The visual pigments of several species of birds. Vision Res. 9, 1063–977.CrossRefGoogle ScholarPubMed
Strother, G. K. & Wolken, J. J. (1959). A simplified microspectrophotometer. Science, N. Y. 130, 1054–8.CrossRefGoogle ScholarPubMed
Tomita, T., Kaneko, A., Murakami, M. & Pautler, E. L. (1967). Spectral response curves of single cones in the carp. Vision Res. 7, 519–31.CrossRefGoogle ScholarPubMed
Trujillo-Cenóz, O. & Melamed, J. (1966). Electron microscope observations on the peripheral and intermediate retinas of dipterans. In The Functional Organization of the Compound Eye (ed. Bernhard, C. G.), pp. 339–61. Oxford: Pergamon Press.Google Scholar
Vanderkooi, G. & Sundaralingam, M. (1970). Biological membrane structure II. A detailed model for the retinal rod outer segment membrane. Proc. nat. Acatd. Sci. USA, 67, 233–8.CrossRefGoogle Scholar
Wald, G. (1938). On rhodopsin in solution. J. gen. Physiol. 21, 795832.CrossRefGoogle ScholarPubMed
Wald, G. (1941). Vitamin A in invertebrate eyes. Am. J. Physiol. 133, 479–80.Google Scholar
Wald, G. (1967). Visual pigments of crayfish. Nature, Lond. 215, 1131–3.CrossRefGoogle ScholarPubMed
Wald, G. (1968 a). The molecular basis of visual excitation. Les Prix Nobel, pp. 260–80. P. A. Norstedt & Söner, Stockholm.Google Scholar
Wald, G. (1968 b). Single and multiple visual systems in arthropods. J. gen. Physiol. 51, 125–56.CrossRefGoogle ScholarPubMed
Wald, G. & Brown, P. K. (1953). The molar extinction of rhodopsin. J. gen. Phsyiol. 37, 189200.CrossRefGoogle ScholarPubMed
Wald, G. & Brown, P. K. (1958). Human rhodopsin. Science, N.Y. 27, 222–6.CrossRefGoogle Scholar
Wald, G. & Brown, P. K. (1965). Human color vision and color blindness. Cold. Spring. Harb. Symp. quant. Biol. 30, 345–61.CrossRefGoogle ScholarPubMed
Wald, G., Brown, P. K. & Smith, P. H.Cyanopsin, a new pigment of cone vision. Science, N. Y. 118, 505–8.CrossRefGoogle Scholar
Wald, G. & Hubbard, R. (1957). Visual pigment of a decapod crustacean: The lobster. Nature, Lond. 180, 278–80.CrossRefGoogle ScholarPubMed
Wald, G. & Seldin, E. B. (1968). Spectral sensitivity of the common prawn. Paleomonetes vulgaris. J. gen. Physiol. 51, 694700.CrossRefGoogle ScholarPubMed
Wasserman, G. S. (1972). Unconditioned response to light in Limulus: mediation by lateral, median, and ventral eye loci. Vision Res. (In the Press.)Google Scholar
Waterman, T. L. & Fernańdez, H. R. (1970). E-vector and wavelength discrimination by retinular cells of the crayfish. Procambarus. Z. vergl. Physiol. 68, 154–74.CrossRefGoogle Scholar
Waterman, T. L.Fernańdez, H. R. & Goldsmith, T. H. (1969). Dichroism of photosensitive pigment in rhabdoms of the crayfish Orconectes. J. gen. Physiol. 54, 415–32.CrossRefGoogle ScholarPubMed
Werblin, F. S. & Dowling, J. E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–55.CrossRefGoogle ScholarPubMed
Williams, T. P. (1970). An isochromic change in the bleaching of rhodopsin. Vision Res. 10, 525–33.CrossRefGoogle ScholarPubMed
Witkovsky, P. (1967). A comparison of ganglion cell and S-potential response properties in carp retina. J. Neurophysiol. 30, 546–61.CrossRefGoogle ScholarPubMed
Wolken, J., Capenos, J. & Tutano, A. (1957). Photoreceptor structures. III. Drosophila melanogaster. J. biophys. biochem. Cytol. 3, 441–8.CrossRefGoogle ScholarPubMed
Worthington, C. R. (1971). Structure of photoreceptor membranes. Fedn. Proc. Fedn. Am. Socs. exp. 30, 5763.Google ScholarPubMed
Wulff, V. J. (1971). The effect of cyclic AMP on Limulus lateral eye retinular cells. Vision Res. II, 1493–5.CrossRefGoogle Scholar
Yoshikami, S. & Hagins, W. A. (1971). Light, calcium, and the photo- current of rods and cones. Absts. of the Biophysical Soc. 15th Ann. meeting. New Orleans, La., 47a.Google Scholar