Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T23:25:52.835Z Has data issue: false hasContentIssue false

Problems and prospects in the theory of gel electrophoresis of DNA

Published online by Cambridge University Press:  17 March 2009

Bruno H. Zimm
Affiliation:
Department of Chemistry, University of California (San Diego), La Jolla, CA 92093–0317, USA
Stephen D. Levene
Affiliation:
Department of Chemistry, University of California (San Diego), La Jolla, CA 92093–0317, USA

Extract

Electrophoresis of DNA through gels of agarose or polyacrylamide (PA) has been one of the most widely used techniques of molecular biology during the past decade, serving both analytical and preparative purposes. The molecular theory of this process has been developing slowly over the same period of time as the result of the efforts of a small but expanding group of people. Initially simple, the theory has grown in ways that no one anticipated at the beginning, partly in response to unexpected experimental discoveries. In this review we describe its current state, including both solved and unsolved problems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolf, D. 1987. Dynamics of an entangled chain in an external field. Macromolecules 20, 116121.CrossRefGoogle Scholar
Attwood, T. K., Nelmes, B. J. & Sellen, D. B. 1988. Electron microscopy of beaded agarose gels. Biopolymers 27, 201212.CrossRefGoogle Scholar
Baumgärtner, A. 1984. Simulation of polymer motion. A. Rev. phys. Chem. 35, 419435.CrossRefGoogle Scholar
Baumgärtner, A. & Muthukumar, M. 1987. A trapped polymer chain in random porous media. J. chem. Phys. 87, 30823088.CrossRefGoogle Scholar
Bell, L. & Byers, B. 1983. Separation of branched from linear DNA by two-dimensional gel electrophoresis. Analyt. Biochem. 130, 527535.CrossRefGoogle ScholarPubMed
Bustamante, C. 1991. Direct observation and manipulation of single DNA molecules using fluorescence microscopy. A. Rev. Biophys. Biophys. Chem. 20, 415446.CrossRefGoogle ScholarPubMed
Calladine, C. R., Collis, C. M., Drew, H. R. & Mott, M. R. 1991. A study of electrophoretic mobility of DNA in agarose and Polyacrylamide Gels. J. molec. Biol. 221, 9811005.CrossRefGoogle ScholarPubMed
Carle, G. F., Frank, M. & Olson, M. V. 1986. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science, N. Y. 232, 6568.CrossRefGoogle ScholarPubMed
Chrambach, A. & Rodbard, D. 1971. Polyacrylamide gel electrophoresis. Science, N.Y. 172, 440451.CrossRefGoogle ScholarPubMed
Crater, G. D., Gregg, M. R. & Holzwarth, G. 1989. Mobility surfaces for field-inversion gel electrophoresis for linear DNA. Electrophoresis 10, 310315.CrossRefGoogle ScholarPubMed
Dawkins, A. J. S. 1989. Review of pulsed field gel electrophoresis. jf. Chromatogr. 492, 615639.CrossRefGoogle Scholar
De Gennes, P.-G. (1971). Reptation of a polymer chain in the presence of fixed obstacles. J. chem. Phys. 55, 572579.CrossRefGoogle Scholar
De Gennes, P.-G. (1978). Scaling Concepts In Polymer Physics. Ithaca, N.Y.: Cornell University Press.Google Scholar
Dèjardin, P. 1989. Expression of the electrophoretic mobility of polyelectrolytes through gels. Phys. Rev. A 40, 47524755.CrossRefGoogle ScholarPubMed
Deutsch, J. M. 1987. Dynamics of pulsed-field electrophoresis. Phys. Rev. Lett. 59, 12551258.CrossRefGoogle ScholarPubMed
Deutsch, J. M. 1988. Theoretical studies of DNA during gel electrophoresis. Science, N. Y. 240, 922924.CrossRefGoogle ScholarPubMed
Deutsch, J. M. 1989. Explanation of anomalous mobility and birefringence measurements found in pulsed field electrophoresis. J. chem. Phys. 90, 74367439.CrossRefGoogle Scholar
Deutsch, J. M. & Madden, T. L. 1989. Theoretical studies of DNA during gel electrophoresis. J. chem. Phys. 90, 24762485.CrossRefGoogle Scholar
Deutsch, J. M. & Reger, J. D. 1991. Simulation of highly stretched chains using longrange Monte Carlo. J. chem. Phys. 95, 20652071.CrossRefGoogle Scholar
Diwan, A. R. & Schuster, T. M. 1989. On the theory of gel electrophoresis of DNA: extension and evaluation of the Lumpkin-Dèjardin-Zimm model. Analyt. Biochem. 183, 122133.CrossRefGoogle ScholarPubMed
Djabourov, M., Clark, A. H., Rowlands, D. W. & Ross-Murphy, S. B. 1989. Small-angle X-ray scattering characterization of agarose sols and gels. Macromol. 22, 180188.CrossRefGoogle Scholar
Doi, M. & Edwards, S. F. 1978. Dynamics of concentrated polymer solutions. J. chem. Soc. Faraday Trans. 274, 17891801.CrossRefGoogle Scholar
Doi, M. & Edwards, S. F. 1986. The Theory of Polymer Dynamics, Oxford University Press; pp. 205206.Google Scholar
Doi, M., Kobayashi, T., Makino, Y., Ogawa, M., Slater, G. W. & Noolandi, J. 1988. Band inversion in gel electrophoresis of DNA. Phys. Rev. Lett. 61, 18931896.CrossRefGoogle ScholarPubMed
Duke, T. A. J. 1989. Tube model of field-inversion electrophoresis. Phys. Rev. Lett. 62, 28772880.CrossRefGoogle ScholarPubMed
Duke, T. A. J. (1990 a). Monte Carlo reptation model of gel electrophoresis: steady state behavior. J. chem. Phys. 93, 90499054.CrossRefGoogle Scholar
Duke, T. A. J. (1990 b). Monte Carlo reptation model of gel electrophoresis: response to field pulses. J. chem. Phys. 93, 90559061.CrossRefGoogle Scholar
Duke, T. A. J. & Viovy, J. L. 1991. Simulation of megabase DNA undergoing gel electrophoresis. Phys. Rev. Lett, (in press).CrossRefGoogle Scholar
Edwards, S. F. & Muthukumar, M. 1988. The size of a polymer in random media. J. chem. Phys. 89, 24352441.CrossRefGoogle Scholar
Fesjian, S., Frisch, H. L. & Jamil, T. 1986. Diffusion of DNA in a gel under an intermittent electric field. Biopolymers 25, 11791184.CrossRefGoogle Scholar
Flory, P. J. 1969. Statistical Mechanics of Chain Molecules. New York: Interscience.CrossRefGoogle Scholar
Gartenberg, M. R. & Crothers, D. M. 1988. DNA sequence determinants of CAP-induced bending and protein binding affinity. Nature, Lond. 333, 824829.CrossRefGoogle ScholarPubMed
Giddings, J. C., Kucera, E., Russell, C. P. & Myers, M. N. 1968. Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks. Exclusion Chromatography. J. Phys. chem. 72, 43974408.CrossRefGoogle Scholar
Griess, G. A., Moreno, E. T., Easom, R. A. & Serwer, P. 1989. The sieving of spheres during agarose gel electrophoresis: quantitation and modeling. Biopolymers 28, 14751484.CrossRefGoogle ScholarPubMed
Gurrieri, S., Rizzarelli, E., Beach, D. & Bustamante, C. 1990. Imaging of kinked configurations of DNA molecules undergoing OFAGE using fluorescence microscopy. Biochemistry Philad. 29, 33963401.CrossRefGoogle ScholarPubMed
Hagerman, P. J. 1990. Sequence-directed curvature of DNA. A. Rev. Biochem. 59, 755781.CrossRefGoogle ScholarPubMed
Havlin, S. & Ben-Avraham, D. 1987. Diffusion in disordered media. Adv. in Physics 36, 695798.CrossRefGoogle Scholar
Heller, G. & Pohl, F. M. 1989. A systematic study of field inversion gel electrophoresis. Nucl. Acids Res. 17, 59896003.CrossRefGoogle ScholarPubMed
Hervet, H. & Bean, C. P. 1987. Electrophoretic mobility of lambda phage HIND III and HAE III DNA fragments in agarose gels: a detailed study. Biopolymers 26, 727742.CrossRefGoogle ScholarPubMed
Holmes, D. L. & Stellwagen, N. C. 1989. Electrophoresis of DNA in oriented agarose gels. J. biomol. struct. Dynamics 7, 311327.CrossRefGoogle ScholarPubMed
Holzwarth, G., McKee, C. B., Steiger, S. & Crater, G. 1987. Transient orientation of linear DNA molecules during pulsed-field gel electrophoresis. Nucl. Acids Res. 15, 1003110044.CrossRefGoogle ScholarPubMed
Honeycutt, J. D. & Thirumalai, D. 1989. Static properties of polymer chains in porous media. J. chem. Phys. 90, 45424559.CrossRefGoogle Scholar
Honeycutt, J. D. & Thirumalai, D. 1990. Influence of optimal cavity shapes on the size of polymer molecules in random media. J. chem. Phys. 93, 68516858.CrossRefGoogle Scholar
Jamil, T., Frisch, H. L. & Lerman, L. S. 1989. Relaxation effects in the gel electrophoresis of DNA in intermittent fields. Biopolymers 28, 14131427.CrossRefGoogle ScholarPubMed
Jamil, T. & Lerman, L. S. 1985. Dependence of the electrophoretic mobility of DNA in gels on field intermittency. J. biomol. Struct. Dynamics 2, 963966.CrossRefGoogle ScholarPubMed
Jonsson, M., Akerman, B. & Nordén, B. 1988. Orientation of DNA during gel electrophoresis studied with linear dichroism spectroscopy. Biopolymers 27, 381414.CrossRefGoogle ScholarPubMed
Kobayashi, T., Doi, M., Makino, Y. & Ogawa, M. 1990. Mobility minima in field-inversion gel electrophoresis. Macrotnolecules 23, 44804481.CrossRefGoogle Scholar
Koo, H.-S., Wu, H.-M. & Crothers, D. M. 1986. DNA bending at Adenine- Thymine tracts. Nature, Lond. 320, 501506.CrossRefGoogle ScholarPubMed
Lai, E., Birren, B. W., Clark, S. M., Simon, M. I. & Hood, L. 1989. Pulsed field gel electrophoresis. Biotechniques 7, 3442.Google ScholarPubMed
Leone, M., Sciortino, F., Migliore, M., Fornili, S. L. & Palma Vittorelli, M. B. 1987. Order parameters of gels and gelation kinetics of aqueous agarose systems: relation to the spinodal decomposition of the sol. Biopolymers 26, 743761.CrossRefGoogle Scholar
Lerman, L. S. & Frisch, H. L. 1982. Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21, 995997.CrossRefGoogle ScholarPubMed
Levene, S. D., Wu, H.-M. & Crothers, D. M. 1986. Bending and flexibility of kinetoplast DNA. Biochemistry 25, 39883995.CrossRefGoogle ScholarPubMed
Levene, S. D. & Zimm, B. H. 1987. Separation of open circular DNA using pulsedfield electrophoresis. Proc. natn. Acad. Sci. U.S.A. 84, 40454057.CrossRefGoogle ScholarPubMed
Levene, S. D. & Zimm, B. H. 1989. Understanding the anomalous electrophoresis of bent DNA molecules: a reptation model. Science, N.Y. 245, 396399.CrossRefGoogle ScholarPubMed
Lumpkin, O. J. 1989. One-dimensional translational motion of a two-spring chain with strong nonlinear drag: a possible model for time-dependent DNA gel electrophoresis. Phys. Rev. A 40, 26342642.CrossRefGoogle ScholarPubMed
Lumpkin, O. J., Dejardin, P. & Zimm, B. H. 1985. Theory of gel electrophoresis of DNA. Biopolymers 24, 15731593.CrossRefGoogle ScholarPubMed
Lumpkin, O. J., Levene, S. D. & Zimm, B. H. 1989. Exactly solvable reptation model. Phys. Rev. A 39, 65576566.CrossRefGoogle ScholarPubMed
Lumpkin, O. J. & Zimm, B. H. 1982. Mobility of DNA in gel electrophoresis. Biopolymers 21, 23152316.CrossRefGoogle ScholarPubMed
Marini, J. C., Levene, S. D., Crothers, D. M. & Englund, P. T. (1982 a). Bent helical structure in kinetoplast DNA. Proc. natn. Acad. Sci. U.S.A. 79, 76647668.CrossRefGoogle ScholarPubMed
Marini, J. C., Levene, S. D., Crothers, D. M. & Englund, P. T. (1982 b). Bent helical structure in kinetoplast DNA (correction). Proc. natn. Acad. Sci. U.S.A. 80, 7678.Google Scholar
McDonell, M. W., Simon, M. N. & Studier, F. W. 1977. Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J. molec. Biol. 110, 119146.CrossRefGoogle ScholarPubMed
Melenkevitz, J. & Muthukumar, M. 1990. Electrophoresis of a polyelectrolyte in random media: Monte Carlo simulations. Chemtracts – Macromolecular Chem. 1, 171182.Google Scholar
Mickel, S., Arena, V. Jr. & Bauer, W. 1977. Physical properties and gel electrophoresis behavior of R12-derived plasmid DNAs. Nucl. Acids Res. 4, 14651482.CrossRefGoogle ScholarPubMed
Muthukumar, M. 1989. Localization of a polymeric manifold in quenched random media. J. chem. Phys. 90, 45954603.CrossRefGoogle Scholar
Muthukumar, M. & Baumgärtner, A. (1989 a). Effects of entropic barriers on polymer dynamics. Macromolecules 22, 19371941.CrossRefGoogle Scholar
Muthukumar, M. & Baumgärtner, A. (1989 b). Diffusion of a polymer chain in random media. Macromolecules 22, 19411946.CrossRefGoogle Scholar
Naghizadeh, J. & Kovac, J. 1986. Cubic lattice simulation of an entangled polymer system. J. chem. Phys 84, 35593566.CrossRefGoogle Scholar
Noolandi, J., Rousseau, J., Slater, G. W., Turmel, C. & Lalande, M. 1987. Self-trapping and anomalous dispersion of DNA in electrophoresis. Phys. Rev. Lett. 358, 24282431.CrossRefGoogle Scholar
Noolandi, J., Slater, G. W., Hwa, A. L. & Viovy, J. L. 1989. Generalized tube model of biased reptation for gel electrophoresis of DNA. Science, N. Y. 243, 14561458.CrossRefGoogle ScholarPubMed
Nordén, B., Elvingson, C., Jonsson, M. & Akerman, B. 1991. Microscopic behavior of DNA during electrophoresis: electrophoretic orientation. Q. Rev. Biophys. 24, 103164.CrossRefGoogle ScholarPubMed
Ogston, A. G. (1958). The Spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54, 17541757.CrossRefGoogle Scholar
Olivera, O. M., Baine, P. & Davidson, N. 1964. Electrophoresis of the nucleic acids. Biopolymers 2, 245257.CrossRefGoogle Scholar
Righetti, P. G., Brost, B. C. W. & Snyder, R. S. 1981. On the limiting pore size of hydrophilic gels for electrophoresis and isoelectric focusing. J. Biochem. Biophys. Methods 4, 347363.CrossRefGoogle ScholarPubMed
Rodbard, D. & Chrambach, A. 1970. Unified theory for gel electrophoresis and gel filtration. Proc. natn. Acad. Sci. U.S.A. 65, 970977.CrossRefGoogle ScholarPubMed
Ross, P. D. & Scruggs, R. L. (1964 a). Electrophoresis of DNA. II. Specific interactions of univalent and divalent cations with DNA. Biopolymers 2, 7989.CrossRefGoogle Scholar
Ross, P. D. & Scruggs, R. L. (1964 b). Electrophoresis of DNA. III. The effect of several univalent electrolytes on the mobility of DNA. Biopolymers 2, 231236.CrossRefGoogle Scholar
Rubinstein, M. 1987. Discretized model of entangled polymer dynamics. Phys. Rev. Lett. 59, 19461949.CrossRefGoogle ScholarPubMed
Schellman, J. A. 1974. Flexibility of DNA. Biopolymers 13, 217226.CrossRefGoogle ScholarPubMed
Schellman, J. A. & Stigter, D. 1977. Electrical double layer, zeta potential and electrophoretic charge of double-stranded DNA. Biopolymers 16, 14151434.CrossRefGoogle ScholarPubMed
Schwartz, D. C., Safran, W., Welch, J., Haas, J., Goldenberg, R. M. & Cantor, C. R. 1983. New techniques for purifying large DNAs and studying their properties and packaging. Cold Spring Harb. Symp. quant. Biol. 47, 189195.CrossRefGoogle ScholarPubMed
Schwartz, D. C. & Cantor, C. R. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 6775.CrossRefGoogle ScholarPubMed
Schwartz, D. C. & Koval, M. 1989. Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature, Lond. 338, 520522.CrossRefGoogle ScholarPubMed
Serwer, P. & Allen, J. L. 1983. Agarose gel electrophoresis of bacteriophages and related particles. Electrophoresis 4, 273276.CrossRefGoogle Scholar
Serwer, P. & Allen, J. L. 1984. Conformation of double-stranded DNA during agarose gel electrophoresis: fractionation of linear and circular molecules with molecular weights between 3 ×106 and 26 × 106. Biochemistry 23, 922927.CrossRefGoogle Scholar
Shaffer, E. O. & Olvera de la Cruz, M. 1989. Dynamics of gel electrophoresis. Macromolecules 22, 13511355.CrossRefGoogle Scholar
Slater, G. W. & Noolandi, J. 1985. Prediction of chain elongation in the reptation theory of DNA gel electrophoresis. Biopolymers 24, 21812184.CrossRefGoogle Scholar
Slater, G. W. & Noolandi, J. 1986. On the reptation theory of gel electrophoresis. Biopolymers 25, 431454.CrossRefGoogle Scholar
Slater, G. W. & Noolandi, J. 1989. The biased reptation model of DNA gel electrophoresis: mobility vs. molecular size and gel concentration. Biopolymers 28, 17811791.CrossRefGoogle ScholarPubMed
Slater, G. W., Rousseau, J. & Noolandi, J. 1987. On the stretching of DNA in the reptation theories of gel electrophoresis. Biopolymers 26, 863872.CrossRefGoogle ScholarPubMed
Slater, G. W., Rousseau, J., Noolandi, J., Turmal, C. & Lalande, M. 1988. Quantitative analysis of the three regimes of DNA electrophoresis in agarose gels. Biopolymers 27, 509524.CrossRefGoogle ScholarPubMed
Slater, G. W., Turmel, C., Lalande, M. & Noolandi, J. 1989. DNA gel electrophoresis: effect of field intensity and agarose concentration on band inversion. Biopolymers 28, 17931799.CrossRefGoogle ScholarPubMed
Smisek, D. L. & Hoagland, D. A. 1989. Agarose gel electrophoresis of high molecular weight, synthetic polyelectrolytes. Macromolecules 22, 22702277.CrossRefGoogle Scholar
Smisek, D. L. & Hoagland, D. A. 1990. Electrophoresis of flexible macromolecules: evidence for a new mode of transport in gels. Science, N.Y. 248, 12211223.CrossRefGoogle ScholarPubMed
Smith, S. B., Aldridge, P. K. & Callis, J. B. 1989. Observation of individual DNA molecules undergoing gel electrophoresis. Science, N.Y. 243, 203206.CrossRefGoogle ScholarPubMed
Southern, E. M. 1979. Measurement of DNA length by gel electrophoresis. Analyt. Biochem. 100, 319323.CrossRefGoogle ScholarPubMed
Southern, E. M., Anand, R., Brown, W. R. A. & Fletcher, D. S. 1987. A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucl. Acids Res. 15, 59255943.CrossRefGoogle Scholar
Stellwagen, N. C. 1985. Effect of the electric field on the apparent mobility of large DNA fragments in agarose gels. Biopolymers 24, 22432255.CrossRefGoogle ScholarPubMed
Stellwagen, N. & Stellwagen, J. 1989. Orientation of DNA and the agarose gel matrix in pulsed electric fields. Electrophoresis 10, 332344.CrossRefGoogle ScholarPubMed
Stigter, D. 1991. Shielding effects of small ions in gel electrophoresis of DNA. Biopolymers 31, 169176.CrossRefGoogle ScholarPubMed
Viovy, J. L. 1988. Molecular mechanism of field-inversion electrophoresis. Phys. Rev. Lett. 60, 855858.CrossRefGoogle ScholarPubMed
Waki, S., Harvey, J. D. & Bellamy, A. R. 1982. Study of agarose gels by electron microscopy of freeze-fractured surfaces. Biopolymers 21, 19091926.CrossRefGoogle ScholarPubMed
West, R. (1987 a). The distribution of void sizes in a reticulate gel. Biopolymers 26, 343350.CrossRefGoogle Scholar
West, R. (1987 b). The electrophoretic mobility of DNA in agarose gel as a function of temperature. Biopolymers 26, 607608.CrossRefGoogle ScholarPubMed
West, R. (1987 c). The mobility of polyions in gel electrophoresis. Biopolymers 26, 609611.CrossRefGoogle ScholarPubMed
West, R. 1988. The structure of agarose gels, and the accommodation within them of irregularly shaped particles. Biopolymers 27, 231249.CrossRefGoogle Scholar
Wu, H.-M. & Crothers, D. M. 1984. The locus of sequence-directed and protein-induced DNA bending. Nature, Lond. 308, 509513.CrossRefGoogle ScholarPubMed
Zimm, B. H. 1988. Size fluctuations can explain anomalous mobility in field-inversion electrophoresis of DNA. Phys. Rev. Lett. 61, 29652968.CrossRefGoogle Scholar
Zimm, B. H. (1991 a). ‘Lakes-straits’ model of field-inversion electrophoresis of DNA. J. chem. Phys. 94, 21872206.CrossRefGoogle Scholar
Zimm, B. H. (1991 b). Erratum: ‘Lakes-straits’ model of field-inversion electrophoresis of DNA. J. chem. Phys. 95, 3026.CrossRefGoogle Scholar
Zimm, B. H., Price, F. P. & Bianchi, J. P. 1958. Dilute gelling systems. IV. Divinylbenzene-styrene copolymers. J. phys. Chem. 62, 979.CrossRefGoogle Scholar