Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T13:43:17.445Z Has data issue: false hasContentIssue false

Age of the Berlin moraine complex, New Hampshire, USA, and implications for ice sheet dynamics and climate during Termination 1

Published online by Cambridge University Press:  22 November 2019

Gordon R.M. Bromley*
Affiliation:
School of Geography, Archaeology and Irish Studies, National University of Ireland Galway, GalwayH91 TK33, Ireland
Brenda L. Hall
Affiliation:
Climate Change Institute and School of Earth and Climate Sciences, University of Maine, Orono, Maine04469, USA
Woodrow B. Thompson
Affiliation:
Maine Geological Survey, 93 State House Station, Augusta, Maine04333, USA
Thomas V. Lowell
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio45221, USA
*
*Corresponding author at: School of Geography, Archaeology and Irish Studies, National University of Ireland Galway, GalwayH91 TK33, Ireland. E-mail address: gordon.bromley@nuigalway.ie (G.R.M. Bromley).

Abstract

At its late Pleistocene maximum, the Laurentide Ice Sheet was the largest ice mass on Earth and a key player in the modulation of global climate and sea level. At the same time, this temperate ice sheet was itself sensitive to climate, and high-magnitude fluctuations in ice extent, reconstructed from relict glacial deposits, reflect past changes in atmospheric temperature. Here, we present a cosmogenic 10Be surface-exposure chronology for the Berlin moraines in the White Mountains of northern New Hampshire, USA, which supports the model that deglaciation of New England was interrupted by a pronounced advance of ice during the Bølling-Allerød. Together with recalculated 10Be ages from the southern New England coast, the expanded White Mountains moraine chronology also brackets the timing of ice sheet retreat in this sector of the Laurentide. In conjunction with existing chronological data, the moraine ages presented here suggest that deglaciation was widespread during Heinrich Stadial 1 event (~18–14.7 ka) despite apparently cold marine conditions in the adjacent North Atlantic. As part of the White Mountains moraine system, the Berlin chronology also places a new terrestrial constraint on the former glacial configuration during the marine incursion of the St. Lawrence River valley north of the White Mountains.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agassiz, L., 1870. On the former existence of local glaciers in the White Mountains. American Association for the Advancement of Science, Proceedings 19, 161167.Google Scholar
Amman, B., Lotter, A.F., 1989. Late-Glacial radiocarbon- and palynostratigraphy on the Swiss Plateau. Boreas 18, 109126.CrossRefGoogle Scholar
Andersen, B.G., 1981. Late Weichselian ice sheets in Eurasia and Greenland. In: Denton, G.H., Hughes, T.J. (Eds.), The Last Great Ice Sheets. John Wiley and Sons, New York, pp. 165.Google Scholar
Andersen, B.J., Mangerud, J., Sørensen, R., Reite, A., Sveian, H., Thoresen, M., Bergström, B., 1995. Younger Dryas ice-marginal deposits in Norway. Quaternary International 28, 147169.CrossRefGoogle Scholar
Antevs, E., 1922. The Recession of the Last Ice Sheet in New England. American Geographical Society, Research Series No. 11. American Geographical Society, New York.CrossRefGoogle Scholar
Balco, G., Briner, J., Finkel, R.C., Rayburn, J.A., Ridge, J.C., Schaefer, J.M., 2009. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quaternary Geochronology 4, 93107.CrossRefGoogle Scholar
Balco, G., Schaefer, J., 2006. Cosmogenic-nuclide and varve chronologies for the deglaciation of southern New England. Quaternary Geochronology 1, 1528.CrossRefGoogle Scholar
Balco, G., Stone, J., Lifton, N., Dunai, T., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.CrossRefGoogle Scholar
Balco, G., Stone, J., Porter, S., Caffee, M., 2002. Cosmogenic-nuclide ages for New England coastal moraines, Martha's Vineyard and Cape Cod, Massachusetts, USA. Quaternary Science Reviews 21, 21272135.CrossRefGoogle Scholar
Ballantyne, C.K., Rinterknecht, V., Gheorghiu, D.M., 2013. Deglaciation chronology of the Galloway Hills ice centre, southwest Scotland. Journal of Quaternary Science 28, 412420.CrossRefGoogle Scholar
Bard, E., Rostek, F., Turon, J.L., Gendreau, S., 2000. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289, 13211324.CrossRefGoogle ScholarPubMed
Barth, A., Marcott, S.A., Licciardi, J.M., Shakun, J.D., 2019. Deglacial thinning of the Laurentide Ice Sheet in the Adirondack Mountains, New York, USA, revealed by 36Cl exposure dating. Paleoceanography and Paleoclimatology 34, 946953.CrossRefGoogle Scholar
Bierman, P.R., Davis, P.T., Corbett, L.B., Lifton, N.A., Finkel, R.C., 2015. Cold-based Laurentide ice covered New England's highest summits during the Last Glacial Maximum. Geology 43, 10591062.Google Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.CrossRefGoogle Scholar
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188198.CrossRefGoogle Scholar
Briner, J.P., Young, N.E., Goehring, B.M., Schaefer, J.M., 2012. Constraining Holocene 10Be production rates in Greenland. Journal of Quaternary Science 27, 26.CrossRefGoogle Scholar
Broccoli, A.J., Manabe, S., 1987. The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dynamics 1, 8799.CrossRefGoogle Scholar
Broecker, W.S., Kennett, J.P., Flower, B.P., Teller, J.T., Trumbore, S., Bonani, G., Wolfli, W., 1989. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature 341, 318321.CrossRefGoogle Scholar
Bromley, G., Putnam, A., Borns, H., Lowell, T., Sandford, T., Barrell, D., 2018. Interstadial rise and Younger Dryas demise of Scotland's last ice fields. Paleoceanography and Paleoclimatology 33, 412429.CrossRefGoogle Scholar
Bromley, G.R., Hall, B.L., Schaefer, J.M., Winckler, G., Todd, C.E., Rademaker, K.M., 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science 26, 3743.CrossRefGoogle Scholar
Bromley, G.R., Hall, B.L., Thompson, W.B., Kaplan, M.R., Garcia, J.L., Schaefer, J.M., 2015. Late glacial fluctuations of the Laurentide Ice Sheet in the White Mountains of Maine and New Hampshire, USA. Quaternary Research 83, 522530.CrossRefGoogle Scholar
Carlson, A.E., Clark, P.U., Raisbeck, G.M., Brook, E.J., 2007. Rapid Holocene deglaciation of the Labrador sector of the Laurentide Ice Sheet. Journal of Climate 20, 51265133.CrossRefGoogle Scholar
Clark, P.U., Marshall, S.J., Clarke, G.K.C., Hostetler, S.W., Licciardi, J.M., Teller, J.T., 2001. Freshwater forcing of abrupt climate change during the last glaciation. Science 293, 283287.CrossRefGoogle ScholarPubMed
Cronin, T.M., 1979. Late Pleistocene benthic foraminifers from the St. Lawrence Lowlands. Journal of Paleontology 53, 781814.Google Scholar
Crosby, I.B., 1934. Extension of the Bethlehem, New Hampshire, moraine. Journal of Geology 42, 411421.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., et al. , 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Denton, G.H., Alley, R.B., Comer, G.C., Broecker, W.S., 2005. The role of seasonality in abrupt climate change. Quaternary Science Reviews 24, 11591182.CrossRefGoogle Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., 2010. The last glacial termination. Science 328, 6521656.CrossRefGoogle ScholarPubMed
Denton, G.H., Hughes, T.J., 1983. Milankovitch theory of ice ages: hypothesis of ice-sheet linkage between regional insolation and global climate. Quaternary Research 20, 125144.CrossRefGoogle Scholar
Elkadi, T., 2013. Histoire postglaciaire de la végétation et des feux dans la région du Lac Mégantic. Master's thesis, Université de Montréal, Montreal.Google Scholar
Ellison, R.C.W., Chapman, M.R., Hall, I.R., 2006. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, 19291932.CrossRefGoogle ScholarPubMed
Fenton, C.R., Hermanns, R.L., Blikra, L.H., Kubik, P.W., Bryant, C., Niedermann, S., Meixner, A., Goethals, M.M., 2011. Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock avalanches at 69° N, Norway. Quaternary Geochronology 6, 437452.CrossRefGoogle Scholar
Flower, B.P., Hastings, D.W., Hill, H.W., Quinn, T.M., 2004. Phasing of deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico. Geology 32, 597600.CrossRefGoogle Scholar
Ganopolski, A., Rahmstorf, S., Petoukhov, V., Claussen, M., 1998. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351356.CrossRefGoogle Scholar
Garcia, J.L., Kaplan, M.R., Hall, B.L., Schaefer, J., Vega, R.M., Schwartz, R., Finkel, R., 2012. Glacier expansion in southern Patagonia throughout the Antarctic cold reversal. Geology 40, 859862.CrossRefGoogle Scholar
Glover, K.C., Lowell, T.V., Wiles, G.C., Pair, D., Applegate, P., Hajdas, I., 2011. Deglaciation, basin formation and post-glacial climate change from a regional network of sediment core sites in Ohio and eastern Indiana. Quaternary Research 76, 401410.CrossRefGoogle Scholar
Goldthwait, J.W., 1916. Glaciation in the White Mountains of New Hampshire. Bulletin of the Geological Society of America 27, 263294.CrossRefGoogle Scholar
Grootes, P.M., Stuiver, M., 1997. Oxygen 18/16 variability in Greenland snow and ice with 10–3- to 105-year time resolution. Journal of Geophysical Research 102, 2645526470.CrossRefGoogle Scholar
Hall, B.L., Borns, H.W. Jr., Bromley, G.R., Lowell, T.V., 2017. Age of the Pineo Ridge System: implications for behavior of the Laurentide Ice Sheet in eastern Maine, USA, during the last deglaciation. Quaternary Science Reviews 169, 344356.CrossRefGoogle Scholar
Hemming, S.R., 2004. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, RG1005.CrossRefGoogle Scholar
Hemming, S.R., Bond, G.C., Broecker, W.S., Sharp, W.D., Klas-Mendelson, M., 2000. Evidence from 40Ar/39Ar ages of individual hornblende grains for varying Laurentide sources of iceberg discharges 22,000 to 10,500 yr BP. Quaternary Research 54, 372383.CrossRefGoogle Scholar
Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P.H., Colose, C., et al. , 2014. A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature 513, 224228.CrossRefGoogle Scholar
Kaplan, M.R., Schaefer, J.M., Denton, G.H., Barrell, D.J., Chinn, T.J., Putnam, A.E., Andersen, B.G., Finkel, R.C., Schwartz, R., Doughty, A.M., 2010. Glacier retreat in New Zealand during the Younger Dryas stadial. Nature 467, 194197.CrossRefGoogle ScholarPubMed
Kaplan, M. R., Schaefer, J. M., Denton, G. H., Doughty, A. M., Barrell, D. J. A., Chinn, T. J. H., Putnam, , et al. , 2013. The anatomy of long-term warming since 15 ka in New Zealand based on net glacier snowline rise. Geology 41, 887890.CrossRefGoogle Scholar
Kaplan, M.R., Strelin, J.A., Schaefer, J.M., Denton, G.H., Finkel, R.C., Schwartz, R., Putnam, A.E., Vandergoes, M.J., Goehring, B.M., Travis, S.G., 2011. In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: implications for late-glacial climate chronology. Earth and Planetary Science Letters 309, 2132.CrossRefGoogle Scholar
Keigwin, L.D., Jones, G.A., Lehman, S.J., Boyle, E.A., 1991. Deglacial meltwater discharge, North Atlantic deep circulation, and abrupt climate change. Journal of Geophysical Research 96, 1681116826.CrossRefGoogle Scholar
Keigwin, L.D., Lehman, S.J., 1994. Deep circulation change linked to Heinrich event 1 and Younger Dryas in a mid-depth North Atlantic core. Paleoceanography and Paleoclimatology 9, 185194.CrossRefGoogle Scholar
Kohl, C.P., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, 35833587.CrossRefGoogle Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.CrossRefGoogle Scholar
Larsen, F.D., 2001. The Middlesex readvance of the late-Wisconsinan ice sheet in central Vermont at 11,900 14C years BP. Geological Society of America, Abstracts with Programs 33, A-15.Google Scholar
Larsen, F.D., 1982. Anatomy of the Chicopee readvance, Massachusetts. In: Joesten, R., Quarrier, S.S. (eds.), Guidebook for field trips in Connecticut and south-central Massachusetts. (74th Annual Meeting of New England Intercollegiate Geological Conference). Connecticut geological and Natural History Survey Guidebook 5, pp. 3148.Google Scholar
Lister, G., 1988. A 15,000-year isotopic record from Lake Zurich of deglaciation and climatic change in Switzerland. Quaternary Research 29, 129141.CrossRefGoogle Scholar
Lougee, R.J., 1935. Time measurements of an ice readvance at Littleton, N. H. Proceedings of the National Academy of the United States of America 21, 3641.CrossRefGoogle ScholarPubMed
Lowell, T.V., Hayward, R.K., Denton, G.H., 1999. Role of climate oscillations in determining ice-margin position: hypothesis, examples, and implications. In: Mickelson, D.M., Attig, J.W. (Eds.), Glacial Processes Past and Present. Geological Society of America, Special Papers 337, 193203.Google Scholar
Lüthgens, C., Boese, M., Preusser, F., 2011. Age of the Pomeranian ice-marginal position in northeastern Germany determined by optically stimulated luminescence (OSL) dating of glaciofluvial sediments. Boreas 40, 598615.CrossRefGoogle Scholar
Lyell, C., 1850. A Second Visit to the United States of North America. 2nd ed.John Murray, London.Google Scholar
MacAyeal, D.R., 1993. Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography 8, 775784.CrossRefGoogle Scholar
Manabe, S., Broccoli, A.J., 1985. The influence of continental ice sheets on the climate of an ice age. Journal of Geophysical Research: Atmospheres 90, 21672190.CrossRefGoogle Scholar
Marcott, S.A., Bauska, T.K., Buizert, C., Steig, E.J., Rosen, J.L., Cuffey, K.M., Fudge, T.J., et al. , 2014. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616621.CrossRefGoogle ScholarPubMed
Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S., Yang, Q., Lyons, W.B., Prentice, M., 1997. Major features and forcing of high-latitude Northern Hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. Journal of Geophysical Research 102, 2634526366.CrossRefGoogle Scholar
McGee, D., Donohoe, A., Marshall, J., Ferreira, D., 2014. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth and Planetary Science Letters 390, 6979.CrossRefGoogle Scholar
McManus, J.F., Francois, R., Gherardi, J.M., Keigwin, L.D., Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834837.CrossRefGoogle ScholarPubMed
Menounos, B., Clague, J.J., Osborn, G., Davis, P.T., Ponce, F., Goehring, B., Maurer, M., Rabassa, J., Coronato, A., Marr, R., 2013. Latest Pleistocene and Holocene glacier fluctuations in southernmost Tierra del Fuego, Argentina. Quaternary Science Reviews 77, 7079.CrossRefGoogle Scholar
Mooers, H.D., Lehr, J.D., 1997. Terrestrial record of Laurentide Ice Sheet reorganization during Heinrich events. Geology 25, 987990.2.3.CO;2>CrossRefGoogle Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 258, 403413.CrossRefGoogle Scholar
Occhietti, S., 2007. The Saint-Narcisse morainic complex and early Younger Dryas events on the southeastern margin of the Laurentide Ice Sheet. Géographie physique et Quaternaire 61, 89117.CrossRefGoogle Scholar
Occhietti, S., Parent, M., Lajeunesse, P., Robert, F., Govare, É., 2011. Late Pleistocene–early Holocene decay of the Laurentide Ice Sheet in Québec–Labrador. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Sciences, Vol. 15. Elsevier, Amsterdam, pp. 601630.CrossRefGoogle Scholar
Occhietti, S., Richard, P.J.H., 2003. Effet réservoir sur les âges 14C de la Mer de Champlain à la transition Pléistocène-Holocène: révision de la chronologie de la déglaciation au Québec Méridional. Géographie physique et Quaternaire 57, 115138.CrossRefGoogle Scholar
Oerlemans, J., 2005. Extracting a climate signal from 169 glacier records. Science 308, 675– 77.CrossRefGoogle ScholarPubMed
Parent, M., Occhietti, S., 1988. Late Wisconsinan deglaciation and Champlain Sea invasion in the St. Lawrence Valley, Québec. Géographie physique et Quaternaire 42, 215246.CrossRefGoogle Scholar
Parris, A.S., Bierman, P.R., Noren, A.J., Prins, M.A., Lini, A., 2010. Holocene paleostorms identified by particle size signatures in lake sediments from the northeastern United States. Journal of Paleolimnology 43, 2949.CrossRefGoogle Scholar
Putnam, A.E., Bromley, G.R., Rademaker, K., Schaefer, J.M., 2019. In situ 10Be production-rate calibration from a 14C-dated late-glacial moraine belt in Rannoch Moor, central Scottish Highlands. Quaternary Geochronology 50, 109125.CrossRefGoogle Scholar
Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vandergoes, M., Denton, G.H., Kaplan, M.J., Finkel, R.C., Schwartz, R., Goehring, B.M., Kelley, S.M., 2010. In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quaternary Geochronology 5, 392409.CrossRefGoogle Scholar
Rademaker, K., Hodgins, G., Moore, K., Zarrillo, S., Miller, C., Bromley, G.R.M., Leach, P., Reid, D.A., Yepez Alvarez, W., Sandweiss, D.H., 2014. Paleoindian settlement of the high-altitude Peruvian Andes. Science 346, 466469.CrossRefGoogle ScholarPubMed
Ramsey, C.B., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Ravazzi, C., Pini, R., Badino, F., De Amicis, M., Londeix, L., Reimer, P.J., 2014. The latest LGM culmination of the Garda Glacier (Italian Alps) and the onset of glacial termination. Age of glacial collapse and vegetation chronosequence. Quaternary Science Reviews 105, 2647.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Richard, P.J.H., Occhietti, S., 2005. 14C chronology for ice retreat and inception of Champlain Sea in the St. Lawrence Lowlands, Canada. Quaternary Research 63, 353358.CrossRefGoogle Scholar
Ridge, J., 2004. The Quaternary glaciation of western New England with correlations to surrounding areas. In: Ehlers, J., Gibbard, P. (Eds.), Quaternary Glaciations –Extent and Chronology. Part II: North America. Developments in Quaternary Sciences, Vol. 2, Part B. Elsevier, Amsterdam, pp. 169199.CrossRefGoogle Scholar
Ridge, J.C., Larsen, F.D., 1990. Re-evaluation of Antevs’ New England varve chronology and new radiocarbon dates of sediments from glacial Lake Hitchcock. Geological Society of America Bulletin 102, 889899.2.3.CO;2>CrossRefGoogle Scholar
Ridge, J.C., Balco, G., Bayless, R.L., Beck, C.C., Carter, L.B., Dean, J.L., Voytek, E.B., Wei, J.H., 2012. The new North American Varve Chronology: a precise record of southeastern Laurentide Ice Sheet deglaciation and climate, 18.2–12.5 kyr BP, and correlations with Greenland ice core records. American Journal of Science 312, 685722.CrossRefGoogle Scholar
Ridge, J.C., Besonen, M.R., Brochu, M., Brown, S.L., Callahan, J.W., Cook, G.J., Nicholson, R.S., Toll, N.J., 1999. Varve, paleomagnetic, and 14C chronologies for late Pleistocene events in New Hampshire and Vermont (U.S.A.). In: Thompson, W.B., Fowler, B.K., Davis, P.T. (Eds.), Late Quaternary History of the White Mountains, New Hampshire and Adjacent Southeastern Québec. Géographie physique et Quaternaire 53, 79107.Google Scholar
Rinterknecht, V.R., Clark, P.U., Raisbeck, G.M., Yiou, F., Bitinas, A., Brook, E.J., Marks, L., et al. , 2006. The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet. Science 311, 14491452.CrossRefGoogle ScholarPubMed
Rinterknecht, V.R., Marks, L., Piotrowski, J.A., Raisbeck, G.M., Yiou, F., Brook, E.J., Clark, P.U., 2005. Cosmogenic 10Be ages on the Pomeranian Moraine, Poland. Boreas 34, 186191.CrossRefGoogle Scholar
Rodbell, D.T., Seltzer, G.O., 2000. Rapid ice margin fluctuations during the Younger Dryas in the tropical Andes. Quaternary Research 54, 328338.CrossRefGoogle Scholar
Schlüchter, C., 1988. The deglaciation of the Swiss-Alps: a paleoclimatic event with chronological problems. Bulletin de l'Association Francaise pour l’étude du Quaternaire 25, 41145.Google Scholar
Shuman, B., Bartlein, P., Logar, N., Newby, P., Webb, T. III, 2002. Parallel climate and vegetation responses to the early Holocene collapse of the Laurentide Ice Sheet. Quaternary Science Reviews 21, 17931805.CrossRefGoogle Scholar
Small, D., Benetti, S., Dove, D., Ballantyne, C.K., Fabel, D., Clark, C.D., Gheorghiu, D.M., Newall, J., Xu, S., 2017. Cosmogenic exposure age constraints on deglaciation and flow behaviour of a marine-based ice stream in western Scotland, 21–16 ka. Quaternary Science Reviews 167, 3046.CrossRefGoogle Scholar
Stansell, N.D., Rodbell, D.T., Licciardi, J.M., Sedlak, C.M., Schweinsberg, A.D., Huss, E.G., Delgado, G.M., Zimmerman, S.H., Finkel, R.C., 2015. Late glacial and Holocene glacier fluctuations at Nevado Huaguruncho in the eastern cordillera of the Peruvian Andes. Geology 43, 747750.CrossRefGoogle Scholar
Stone, J.O.H., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323759.CrossRefGoogle Scholar
Strelin, J.A., Denton, G.H., Vandergoes, M.J., Ninnemann, U.S., Putnam, A.E., 2011. Radiocarbon chronology of the late-glacial Puerto Bandera moraines, southern Patagonian icefield, Argentina. Quaternary Science Reviews 30, 25512569.CrossRefGoogle Scholar
Suter, J., 1981. Gletschergeschichte des Oberengadins: Untersuchung von Gletscherschwankungen in der Err-Julier-Gruppe. Physische Géographie 2. PhD dissertation, Geographisches Institut, Universität Zürich, Zürich, Switzerland.Google Scholar
Thompson, W.B., 1999. History of research on glaciation in the White Mountains, New Hampshire (U.S.A.). Géographie physique et Quaternaire 53, 724.CrossRefGoogle Scholar
Thompson, W.B., Boisvert, R.A., Dorion, C.C., Kirby, G.A., Pollock, S.G., 2009. C3: glacial geology, climate history, and late-glacial archaeology of the northern White Mountains, New Hampshire (Part 2). In: Westerman, D.S., Lathrop, A.S. (Eds.), Guidebook for Field Trips in the Northeast Kingdom of Vermont and Adjacent Regions: New England Intercollegiate Geological Conference, 101st Annual Meeting, Lyndon State College, Lyndonville, VT, pp. 225242.Google Scholar
Thompson, W.B., Borns, H.W., Hall, B.L., 2007. Extrapolation of the Littleton-Bethlehem (Older Dryas) and Pineo Ridge moraine systems across New Hampshire and Maine. Geological Society of America, Abstracts with Programs 39, 55.Google Scholar
Thompson, W.B., Dorion, C.C., Ridge, J.C., Balco, G., Fowler, B.K., Svendsen, K.M., 2017. Deglaciation and late-glacial climate change in the White Mountains, New Hampshire, USA. Quaternary Research 87, 96120.CrossRefGoogle Scholar
Thompson, W.B., Fowler, B.K., Dorion, C.C., 1999. Deglaciation of the northwestern White Mountains, New Hampshire. In: Thompson, W.B., Fowler, B.K., Davis, P.T. (Eds.), Late Quaternary history of the White Mountains, New Hampshire and adjacent southeastern Québec. Géographie physique et Quaternaire 53, 5977.Google Scholar
Thompson, W.B., Fowler, B.K., Flanagan, S.M., Dorion, C.C., 1996, Recession of the late Wisconsinan ice sheet from the northwestern White Mountains, New Hampshire. In: Van Baalen, M.R. (Ed.), Guidebook to Field Trips in Northern New Hampshire and Adjacent Regions of Maine and Vermont: New England Intercollegiate Geological Conference, 88th Annual Meeting, pp. B4 132.Google Scholar
Thompson, W.B., Svendsen, K.M., 2015. Deglaciation Features in the Northern White Mountains, New Hampshire. Open-File Map, 1:100,000 scale. New Hampshire Geological Survey, Concord, NH.Google Scholar
Toucanne, S., Soulet, G., Freslon, N., Jacinto, R.S., Dennielou, B., Zaragosi, S., Eynaud, F., Bourillet, J.F., Bayon, G., 2015. Millennial-scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate. Quaternary Science Reviews 123, 113133.CrossRefGoogle Scholar
Weaver, A.J., Eby, M., Fanning, A.F., Wiebe, E.C., 1998. Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature 394, 847853.CrossRefGoogle Scholar
Young, N.E., Schaefer, J.M., Briner, J.P., Goehring, B.M., 2013. A 10Be production-rate calibration for the Arctic. Journal of Quaternary Science 28, 515526.CrossRefGoogle Scholar
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S.U., Hoelzle, M., Paul, F., Haeberli, W., et al. , 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology 61, 745762.CrossRefGoogle Scholar