Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T14:22:29.021Z Has data issue: false hasContentIssue false

Causes and implications of Mid- to Late Holocene relative sea-level change in the Gulf of Kachchh, western India

Published online by Cambridge University Press:  16 November 2020

Shubhra Sharma*
Affiliation:
Physical Research Laboratory, Ahmedabad-380009, India
Gaurav Chauhan
Affiliation:
Department of Earth and Environmental Science, The K.S.K.V. Kachchh University, Bhuj-370001, India
Anil Dutt Shukla
Affiliation:
Physical Research Laboratory, Ahmedabad-380009, India
Romi Nambiar
Affiliation:
Physical Research Laboratory, Ahmedabad-380009, India
Ravi Bhushan
Affiliation:
Physical Research Laboratory, Ahmedabad-380009, India
Bhawanisingh G. Desai
Affiliation:
Pandit Deendayal Petroleum University, Raisan Village, Gandhinagar-382009, India
Shilpa Pandey
Affiliation:
Birbal Sahni Institute of Palaeoscience, Lucknow-226007, India
Madhavi Dabhi
Affiliation:
Department of Earth and Environmental Science, The K.S.K.V. Kachchh University, Bhuj-370001, India
Subhash Bhandari
Affiliation:
Department of Earth and Environmental Science, The K.S.K.V. Kachchh University, Bhuj-370001, India
Suraj Bhosale
Affiliation:
Department of Earth and Environmental Science, The K.S.K.V. Kachchh University, Bhuj-370001, India
Abhishek Lakhote
Affiliation:
Department of Earth and Environmental Science, The K.S.K.V. Kachchh University, Bhuj-370001, India
Navin Juyal
Affiliation:
Physical Research Laboratory, Ahmedabad-380009, India
*
*Corresponding author at: Department of Geography, Banaras Hindu University, Varanasi, India-221005. E-mail address: shubshubhra@gmail.com; shubhra@bhu.ac.in (S. Sharma).

Abstract

The relict intertidal deposits from the Kharod River Estuary, Gulf of Kachchh, and the distal end of Kori Creek are used to infer the Mid- to Late Holocene relative sea-level (RSL) change in western India. Employing sedimentology, geochemistry, palynology, ichnology, and optical and radiocarbon dating, the study suggests the dominance of fluvial activity between 16.5 ± 1.6 and 9.9 ± 0.7 ka. After ~7 ka (7.3 ± 0.4, 6.8 ± 0.5 ka), the sea level showed a positive tendency until 4.7 ± 0.2 ka. The tectonically corrected Mid-Holocene RSL change is estimated as 1.45 ± 0.33 m between ~7 and ~5 ka. The study suggests that the Mid-Holocene RSL high was due to the meltwater contribution from the Himalayan cryosphere, with subordinate contribution from glacio-isostatic adjustment and crustal subsidence. The Late Holocene tectonically corrected RSL change at ~1 ka (1.1 ± 0.1 ka and 1045 ± 175 cal yr BP) is estimated as 0.53 ± 0.43 m. This is ascribed to monsoon wind-driven tidal ingression that might have affected the tidal amplitude positively. The study suggests that the Mid-Holocene RSL change did not play a deterministic role in the abandonment of the Harappan coastal settlements.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Current Address: Department of Geography, Banaras Hindu University, Varanasi, India-221005

References

REFERENCES

Aitken, M.J., 1998. Introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence. Clarendon Press, New York.Google Scholar
Ajithprasad, P., 2006. The Harappan Black Slipped Jar from Bagasra, Gujarat and its Significance. Pre-print of paper presented in the International Seminar on Magan and Indus Civilization, organized by ASI and M S University of Baroda.Google Scholar
Allen, J.R.L., Angela, L.L., Drak, P., 2007. Seasonality of δ13C and C/N ratios in modern and mid-Holocene sediments in the Severn Estuary levels, SW Britain. The Holocene 17, 139144.CrossRefGoogle Scholar
Bailey, R.M., Arnold, L.J., 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Review 25 (19–20), 24752502.CrossRefGoogle Scholar
Banerjee, D., Murray, A.S., Bøtter-Jensen, L., Lang, A., 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33, 7394.CrossRefGoogle Scholar
Banerjee, P.K., 1993. Imprints of late Quaternary climatic and sea level changes on East and South Indian coast. Geo-Marine Letters 13, 5660.CrossRefGoogle Scholar
Banerjee, P.K., 2000. Holocene and Late Pleistocene relative sea level fluctuations along the east coast of India. Marine Geology 167, 243260.CrossRefGoogle Scholar
Banerji, U.S., Pandey, S., Bhushan, R., Juyal, N., 2015. Mid-Holocene climate and land–sea interaction along the southern coast of Saurashtra, western India. Journal of Asian Earth Sciences 111, 428439.CrossRefGoogle Scholar
Bezerra, F.H.R., Vita-Finzi, C., Lima Filho, F.P., 2000. The use of marine shells for radiocarbon dating of coastal deposits. Revista Brasileira de Geociências 30, 211213.CrossRefGoogle Scholar
Bhattacharya, F., Chauhan, G., Prasad, A.D., Patel, R.C., Thakkar, M.G., 2019. Strike-slip faults in an intraplate setting and their significance for landform evolution in the Kachchh peninsula, Western India. Geomorphology 328, 118137.CrossRefGoogle Scholar
Bhattacharya, F., Rastogi, B.K., Thakkar, M.G., Patel, R.C., Juyal, N., 2014. Fluvial landforms and their implication towards understanding the past climate and seismicity in the northern Katrol Hill Range, western, India. Quaternary International 333, 4961.CrossRefGoogle Scholar
Bhatt, N., Bhonde, U., 2006. Geomorphic expression of late Quaternary sea level changes along the southern Saurashtra coast, western India. Journal of Earth System Science 115, 395402.CrossRefGoogle Scholar
Bhushan, R., Chakraborty, S. and Krishnaswami, S., 1994. Physical research laboratory (chemistry) radiocarbon date list I. Radiocarbon 36, 251256.CrossRefGoogle Scholar
Bhushan, R., Sati, S.P., Rana, N., Shukla, A.D., Mazumdara, A.S., Juyal, N., 2018. High-resolution millennial and centennial scale Holocene monsoon variability in the Higher Central Himalayas. Palaeogeography, Palaeoclimatology, Palaeoecology 489, 95104.CrossRefGoogle Scholar
Biswas, S.K., 2016. Tectonic Framework, Structure and Tectonic Evolution of Kutch Basin, Western India. In Conference GSI, 129-–50. DOI: 10.17491/cgsi/2016/105417CrossRefGoogle Scholar
Blanchon, P., Shaw, J., 1995. Reef drowning during the last deglaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23, 48.2.3.CO;2>CrossRefGoogle Scholar
Bordovskiy, O.K., 1965. Accumulation and transformation of organic substances in marine sediments. Marine Geology 3, 531.CrossRefGoogle Scholar
Bøtter-Jensen, L., Thomsen, K.J., Jain, M., 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45, 253257.CrossRefGoogle Scholar
Brain, M.J., Long, A.J., Woodroffe, S.A., Petley, D.N., Milledge, D.G., Parnell, A.C., 2012. Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise. Earth and Planetary Science Letters 345, 180193.CrossRefGoogle Scholar
Brückner, H., 1989. Late Quaternary shorelines in India; In: Scott, D.B.., Pirazoli, P.A., Honig, C.A., (Eds.), Late Quaternary sea-level correlation and applications. Kluwer Academic Publisher, pp. 169194.CrossRefGoogle Scholar
Buatois, L.A., Màngano, M.G., 2011. Ichnology: Organism-Substrate interaction in space and Time. Cambridge University Press, New York, p. 1358.CrossRefGoogle Scholar
Burow, C., 2019. calc_CentralDose: Apply the central age model (CAM) after Galbraith et al. (1999) to a given De distribution. version 1.4.0. 2019 In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J. (Eds.), Luminescence: Comprehensive Luminescence Dating Data Analysis. R Package Version 0.9.5, https://CRAN.R-project.org/package=Luminescence.Google Scholar
Chauhan, O.S., Almeida, F., 1993. Influences of Holocene sea level, regional tectonics, and fluvial, gravity and slope currents induced sedimentation on the regional geomorphology of the continental slope off northwestern India. Marine Geology 112, 313328.CrossRefGoogle Scholar
Chauhan, O.S., Vogelsang, E., Basavaiah, N., Kader, U.S.A., 2010. Reconstruction of the variability of the southwest monsoon during the past 3 ka, from the continental margin of the southeastern Arabian Sea. Journal of Quaternary Science 25, 798807.CrossRefGoogle Scholar
Christiansen, C., Vølund, G., Lund-Hansen, L.C., Bartholdy, J., 2006. Wind influence on tidal flat sediment dynamics: Field investigations in the Ho Bugt, Danish Wadden Sea. Marine Geology 235, 7586.CrossRefGoogle Scholar
Clark, J.A., Farrell, W.E., Peltier, W.R., 1978. Global changes in postglacial sea level: a numerical calculation. Quaternary Research 9, 265287.CrossRefGoogle Scholar
Clift, P.D., Carter, A., Giosan, L., Durcan, J., Duller, G.A.T., Macklin, Mark G., Alizai, A., et al. ., 2012. U-Pb zircon dating evidence for a Pleistocene Sarasvati River and capture of the Yamuna River. Geology 40, 211214.CrossRefGoogle Scholar
Clift, P.D., Giosan, L., 2014. Sediment fluxes and buffering in the post-glacial Indus Basin. Basin Research 26, 369386.CrossRefGoogle Scholar
Clift, P.D., Giosan, L., Carter, A., Garzanti, E., Galy, V., Tabrez, A.R., Pringle, M., et al. , 2010. Monsoon control over erosion patterns in the western Himalaya: possible feed-back into the tectonic evolution. Geological Society, London, Special Publications 342, 185218.CrossRefGoogle Scholar
Compton, J.S., Franceschini, G., 2005. Holocene geoarchaeology of the Sixteen Mile Beach barrier dunes in the Western Cape, South Africa. Quaternary Research 63, 99107.CrossRefGoogle Scholar
Daidu, F., Yuan, W., Min, L., 2013. Classifications, sedimentary features and facies associations of tidal flats. Journal of Palaeogeography 2, 6680.Google Scholar
Dalca, A.V., Ferrier, K.L., Mitrovica, J.X., Perron, J.T., Milne, G.A., Creveling, J.R., 2013. On postglacial sea level—III. Incorporating sediment redistribution. Geophysical Journal International 194, 4560.CrossRefGoogle Scholar
Dales, G.F., 1962. Harappan outposts on the Makran coast. Antiquity 36, 8692.CrossRefGoogle Scholar
Dalrymple, R.W., Mackay, D.A., Ichaso, A.A., Choi, K.S., 2012. Processes, morphodynamics, and facies of tide-dominated estuaries. In: Davis, R. Jr., Dalrymple, R. (eds) Principles of Tidal Sedimentology. Springer, Dordrecht, pp. 79107 https://doi.org/10.1007/978-94-007-0123-6_5.CrossRefGoogle Scholar
Das, A., Prizomwala, S.P., Makwana, N., Thakkar, M.G., 2017. Late Pleistocene-Holocene climate and sea level changes inferred based on the tidal terrace sequence, Kachchh, Western India. Palaeogeography, Palaeoclimatology, Palaeoecology 473, 8293.CrossRefGoogle Scholar
Day, J.W., Gunn, J.D., Folan, W.J., Yanez-Arancibia, A., Horton, B.P., 2007. Post-glacial coastal margin productivity and the emergence of civilizations. Eos Transactions AGU 80, 170171.Google Scholar
Desai, B.G., 2016. Ichnological analysis of the Pleistocene Dwarka Formation, Gulf of Kachchh: trace maker behaviors and reworked traces. Geodinamica Acta 28, 1833.CrossRefGoogle Scholar
Desai, B.G., Patel, S.J., 2008. Trace Fossil Assemblages (Ichnocoenoses) of the Tectonically Uplifted Holocene Shorelines, Kachchh, Western India. Journal of the Geological Society of India 71, 527-540.Google Scholar
Desjardins, P.R., Buatois, L.A., Màngano, M.G., 2012. Tidal flats and subtidal sand bodies. In: Dirk Knaust, Richard G. Bromley (eds) Developments in Sedimentology 64, 529–561. Elsevier.CrossRefGoogle Scholar
Dunn, R.J., Welsh, D.T., Teasdale, P.R., Lee, S.Y., Lemckert, C.J., Méziane, T., 2008. Investigating the distribution and sources of organic matter in surface sediment of Coombabah Lake (Australia) using elemental, isotopic and fatty acid biomarkers. Continental Shelf Research 28, 25352549.CrossRefGoogle Scholar
Durcan, J.A., King, G.E., Duller, G.A., 2015. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronology 28, 5461.CrossRefGoogle Scholar
Dutta, K., Bhushan, R., Somayajulu, B., 2001. ΔR correction values for the northern Indian Ocean. Radiocarbon 43, 483–488. Encyclopedia of Earth Science Series. Springer, Dordrecht.CrossRefGoogle Scholar
Engelhart, S.E., Vacchi, M., Horton, B.P., Nelson, A.R., Kopp, R.E., 2015. A sea-level database for the Pacific coast of central North America. Quaternary Science Reviews 113, 7892.CrossRefGoogle Scholar
Erdtman, G., 1943. An introduction to pollen analysis. Chronica Botanica, Waltham Massachusetts.Google Scholar
Fagherazzi, S., Howard, A.D., Wiberg, P.L., 2004. Modeling fluvial erosion and deposition on continental shelves during sea level cycles. Journal of Geophysical Research 109 (F3), F03010, 10.1029/2003JF000091.CrossRefGoogle Scholar
Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637642.CrossRefGoogle Scholar
Ferrier, K. L., Mitrovica, J.X., Giosan, L., Clift, P.D., 2015. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea. Earth and Planetary Sciences Letters 416, 1220.CrossRefGoogle Scholar
Flam, L., 1993. Fluvial geomorphology of the lower Indus basin (Sindh, Pakistan) and the Indus civilization. Shroder, J.F. (Ed.), Himalaya to the sea. Routledge, London, pp. 265287.CrossRefGoogle Scholar
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., Chappell, J., 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far-and intermediate-field sites. Earth and Planetary Science Letters 163, 327342.CrossRefGoogle Scholar
Fuchs, M.C., Gloaguen, R., Krbetschek, M., Szulc, A., 2014. Rates of river incision across the main tectonic units of the Pamir identified using optically stimulated luminescence dating of fluvial terraces. Geomorphology 216, 7992.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11, 127.CrossRefGoogle Scholar
Ganju, A., Nagara, Y.C., Sharma, L.N., Sharma, S., Juyal, N., 2018. Luminescence chronology and climatic implication of glaciation in the Nubra valley, Karakoram Himalaya, Palaeogeography, Palaeoclimatology, Palaeoecology, https://doi.org/10.1016/j.palaeo.2.18.04.022.CrossRefGoogle Scholar
Gaur, A.S., Vora, K.H., 1999. Ancient shoreline of Gujarat, India during the Indus civilization (late mid-Holocene): A case study based on archaeological evidences. Current Science 77, 180185.Google Scholar
Gaur, A.S., Vora, K.H., Sundaresh, R., Murali, M., Jayakumar, S., 2013. Was the Rann of Kachchh navigable during the Harappan times (Mid-Holocene)? An archaeological perspective. Current Science 105, 14851491.Google Scholar
Glennie, K.W., Evans, G., 1976. A reconnaissance of the Recent sediments of the Ranns of Kutch, India. Sedimentology 23, 625647.CrossRefGoogle Scholar
Goudie, A.S., 1983. Calcrete. In: Goudie, A.S., Pye, K. (Eds.), Chemical Sediments and Geomorphology. Academic Press, London, pp. 93132.Google Scholar
Gupta, S.K., 1975. Silting of the Rann of Kutch during Holocene. Indian Journal of Earth Sciences 2, p.201.Google Scholar
Häntzschel, W., 1955. Tidal flat deposits (Wattenschlick). In: Trask, P.D. (ed.), Recent Marine Sediments. The Society of Economic Paleontologists and Mineralogists (SP4), pp. 195226.Google Scholar
Häntzschel, W., 1975. Trace fossils and problematic In: Teichert, C. (Ed.), Treatise on invertebrate paleontology (Part W, Miscellanea. Supplement 1). Geological Society of America/University of Kansas Press, Boulder/Lawrence, pp. 1269.Google Scholar
Harris, P. T., Heap, A. D., Marshall, J. F., McCulloch, M., 2008. A new coral reef province in the Gulf of Carpentaria, Australia: colonisation, growth and submergence during the early Holocene. Marine Geology 251, 8597.CrossRefGoogle Scholar
Hashimi, N.H., Nigam, R., Nair, R.R., Rajagopalan, G., 1995. Holocene sea level fluctuations on western Indian continental margin-an update. Journal of the Geological Society of India 46, 157162.Google Scholar
Hesp, P.A., 1984. Foredune Formation in Southeast Australia. In: Thom, B.G. (Ed.), Coastal geomorphology in Australia. Academic Press, Sydney, pp. 6997.Google Scholar
Hijma, M.P., Engelhart, S.E., Törnqvist, T.E., Horton, B.P., Hu, P., Hill, D.F., 2015. A protocol for a geological sea-level database. In: Shennan, I., Long, A.J., Horton, B.P. (Eds.), Handbook of Sea-Level Research. Wiley Blackwell, pp. 536553.Google Scholar
Hogg, A.G., Higham, T.F., Dahm, J., 1998. 14 C dating of modern marine and estuarine shellfish. Radiocarbon 40, 975984.CrossRefGoogle Scholar
Hori, K., Saito, Y., 2007. An early Holocene sea-level jump and delta initiation. Geophysical Research Letters 34, L18401, doi:10.1029/2007GL031029.CrossRefGoogle Scholar
Jensen, M.A., Pedersen, G.K., 2010. Architecture of vertically stacked fluvial deposits, Atane Formation, Cretaceous, Nuussuaq, central West Greenland. Sedimentology 57, 12801314.Google Scholar
Johnson, D.W., 1919. Shore Processes and Shoreline Development. Hafner Publishing, New York.Google Scholar
Juyal, N., Pant, R.K., Bhushan, R., Somayajulu, B.L.K., 1995. Radiometric dating of late Quaternary sea levels of the Saurashtra coast, Western India: an experiment with oyster and clam shells. Geological Society of India Memoir 32, 372379.Google Scholar
Juyal, N., Raj, R., Maurya, D.M., Chamyal, L.S., Singhvi, A.K., 2000. Chronology of late Pleistocene environmental changes in the lower Mahi basin, western India. Journal of Quaternary Science 15, 501508.3.0.CO;2-J>CrossRefGoogle Scholar
Kale, P., Singh, H., Perlmutter, H., 2000. Learning and protection of proprietary assets in strategic alliances: building relational capital. Strategic Management Journal 21, 217237.3.0.CO;2-Y>CrossRefGoogle Scholar
Kale, V.S., Mishra, S., Baker, V.R., 2003. Sedimentary records of palaeofloods in the bedrock gorges of the Tapi and Narmada Rivers, central India. Current Science 84, 10721079.Google Scholar
Kar, A., 1993. Neotectonic influences on morphological variations along the coastline of Kachchh, India. Geomorphology 8, 199219.CrossRefGoogle Scholar
Kench, P.S., Smithers, S.G., Mclean, R.F., Nichol, S.L., 2009. Holocene reef growth in the Maldives: evidence of a mid-Holocene sea-level highstand in the central Indian Ocean. Geology 37, 455458.CrossRefGoogle Scholar
Kennett, D.J., Kennett, J.P., Erlandson, J.M., Cannariato, K.G., 2007. Human responses to Middle Holocene climate change on California's Channel Islands. Quaternary Science Reviews 26, 351367.CrossRefGoogle Scholar
Kenoyer, J. M., 1998. Ancient Cities of the Indus Valley Civilization. Oxford University Press, Oxford.Google Scholar
Khan, F.A., 1955. Fresh Sidelights on the Indus Valley and the Bronze Age Orient (No. 4). Department of Archaeology, Annual Report of the Institute of Archaeology, pp. 51–68.Google Scholar
Khonde, N., Maurya, D.M., Singh, A.D., Chowksey, V., Chamyal, L.S., 2011. Environmental significance of raised rann sediments along the margins of Khadir, Bhanjada and Kuar Bet islands in Great Rann of Kachchh, Western India. Current Science 101, 14291434.Google Scholar
Knaust, D., 2017. Atlas of Trace Fossils in Well Core: Appearance, Taxonomy, and Interpretation. Springer, Norway.CrossRefGoogle Scholar
Kopp, R.E., Kemp, A.C., Bittermann, K., Horton, B.P., Donnelly, J.P., Gehrels, W.R., Hay, C.C., Mitrovica, J.X., Morrow, E.D., Rahmstorf, S., 2016. Temperature-driven global sea-level variability in the Common Era. Proceedings of the National Academy of Sciences 113, 14341441.CrossRefGoogle ScholarPubMed
Kothyari, G.C., Rastogi, B.K., Morthekai, P., Dumka, R.K., 2016. Landform development in a zone of active Gedi Fault, Eastern Kachchh rift basin, India. Tectonophysics 670, 115126.CrossRefGoogle Scholar
Ku, H.W., Chen, Y.G., Liu, T.K., 2005. Environmental Change in the Southwestern Coastal Plain of Taiwan since Late Pleistocene: Using Multiple Proxies of Sedimentary Organic Matter. TAO 16, 10791096.Google Scholar
Kunte, P.D., Wagle, B.G., 2005. The beach ridges of India: a review. Journal of Coastal Research 42, 174183.Google Scholar
Lambeck, K., Esat, T.M., Potter, E.K., 2002. Links between climate and sea levels for the past three million years. Nature 419, 199206.CrossRefGoogle ScholarPubMed
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences 111, 1529615303.CrossRefGoogle ScholarPubMed
Lambeck, K., Woodroffe, C.D., Antonioli, F., Anzidei, M., Gehrels, W.R., Laborel, J., Wright, A.J., 2010. Paleoenvironmental records, geophysical modeling, and reconstruction of sea-level trends and variability on centennial and longer timescales. In: Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.S. (Eds.), Understanding Sea-Level Rise and Variability. Wiley-Blackwell, pp. 61121.CrossRefGoogle Scholar
Lamb, H.H., 1965. The early medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology 1, 1337.CrossRefGoogle Scholar
Lawler, A., 2011. Did the first cities grow from marshes? Science 331, 141.CrossRefGoogle ScholarPubMed
Makwana, N., Prizomwala, S.P., Chauhan, G., Phartiyal, B., Thakkar, M.G., 2019. Late Holocene palaeo-environmental change in the Banni Plains, Kachchh, Western India. Quaternary International 507, 197205.CrossRefGoogle Scholar
Mandal, P., Rastogi, B.K., Satyanarayana, H.V.S., Kousalya, M., 2004. Results from local earthquake velocity tomography: implications toward the source process involved in generating the 2001 Bhuj earthquake in the lower crust beneath Kachchh (India). Bulletin of the Seismological Society of America 94, 633649.CrossRefGoogle Scholar
Mann, T., Bender, M., Lorscheid, T., Stocchi, P., Vacchi, M., Switzer, A.D., Rovere, A., 2019. Holocene sea levels in southeast Asia, Maldives, India and Sri Lanka: the SEAMIS database. Quaternary Science Reviews 219, 112125.CrossRefGoogle Scholar
Maurya, D.M., Thakkar, M.G., Chamyal, L.S., 2003. Quaternary geology of the arid zone of Kachchh: Terra incognita. Proceedings of the Indian National Science Academy 69, 125135.Google Scholar
McCarthy, T.S., Metcalfe, J., 1990. Chemical sedimentation in Okavango Delta, Botswana. Chemical Geology 89, 157178.CrossRefGoogle Scholar
McLennan, S.M., 1993. Weathering and global denudation. Journal of Geology 101, 295303.CrossRefGoogle Scholar
Merh, S.S., 2005. The great Rann of Kachchh: perceptions of a field geologist. Journal of the Geological Society of India 65, 925.Google Scholar
Miall, A.D., 1977. Lithofacies types and vertical profile models in braided river deposits: a summary. Geological Survey of Canada 3303, 597604Google Scholar
Michael, L., Gopala Rao, D., Krishna, K.S., Vora, K.H., 2009. Late Quaternary Seismic Sequence Stratigraphy of the Gulf of Kachchh, Northwest of India. Journal of Coastal Research 25, 459468.CrossRefGoogle Scholar
Milliman, J.D., Quraishee, G.S., Beg, M.A.A., 1984. Sediment discharge from the Indus River to the ocean: past, present and future. In: Haq, B.U., Milliman, J.D. (Eds), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan. Van Nostrand Reinhold, New York, pp. 6670.Google Scholar
Milne, G.A., Long, A.J., Bassett, S.E., 2005. Modelling Holocene relative sea-level observations from the Caribbean and South America. Quaternary Science Reviews 24, 11831202.CrossRefGoogle Scholar
Mitrovica, J.X., Milne, G.A., 2002. On the origin of late Holocene sea-level high stands within equatorial ocean basins. Quaternary Science Review 21, 21792190.CrossRefGoogle Scholar
Mitrovica, J.X., Peltier, W.R., 1991. On postglacial geoid subsidence over the equatorial oceans. Journal of Geophysical Research: Solid Earth, 96(B12), 2005320071.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Nanson, G.C., Tooth, S., 1999. Arid-zone rivers as indicators of climate change. In Singhvi, A.K. and Derbyshire, E., (eds), Paleoenvironmental reconstruction in arid lands, Rotterdam: A.A. Balkema, 175216.Google Scholar
Nayar, T.S., 1990. Pollen flora of Maharashtra State, India. Today and Tomorrow's Printers and Publishers, New Delhi, pp. 1139.Google Scholar
Nazneen, S., Raju, N.J., 2017. Distribution and sources of carbon, nitrogen, phosphorous and biogenic silica in the sediments of Chilika lagoon. Journal of Earth System Science 126, 113.CrossRefGoogle Scholar
Newman, W.S., Pardi, R.W., Fairbridge, R.W., 1989. Some considerations of the compilation of late Quaternary sea level curves: A North American perspective. In: Scott, D.B., Pirazzoli, P.A., Honig, C.A. (eds) Late Quaternary Sea-Level Correlation and Applications. NATO ASI Series (Series C: Mathematical and Physical Sciences) 256. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0873-4_11Google Scholar
Ngangom, M., Bhandari, S., Thakkar, M.G., Shukla, A.D., Juyal, N., 2016. Mid-Holocene extreme hydrological events in the eastern Great Rann of Kachchh, western India. Quaternary International 443, 188199.CrossRefGoogle Scholar
Orton, G.J., Reading, H.G., 1993. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain-size. Sedimentology 40, 475512.CrossRefGoogle Scholar
Otvos, E.G., 2000. Beach ridges—definitions and significance. Geomorphology 32, 83108.CrossRefGoogle Scholar
Pant, R.K., Juyal, N., 1993. Late Quaternary coastal instability and sea level changes: new evidence from Saurashtra coast, Western India. Zeitschrift fur Geomorphologie N.F. 37, 2940.Google Scholar
Patel, S.J., Desai, B.G., 2009. Animal-sediment relationship of the crustaceans and polychaetes in the intertidal zone around Mandvi, Gulf of Kachchh, Western India. Journal of the Geological Society of India 74, 233259.CrossRefGoogle Scholar
Peltier, W.R., 1999. Global sea level rise and glacial isostatic adjustment. Global Planetary Change 20, 93123.CrossRefGoogle Scholar
Pirazzoli, P.A., 1991. World Atlas of Holocene sea-level changes. Elsevier, Amsterdam.Google Scholar
Prahl, F.G., Bennett, J.T., Carpenter, R., 1980. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. Geochimica et Cosmochimica Acta 44, 19671976.CrossRefGoogle Scholar
Prizomwala, S.P., Das, A., Chauhan, G., Solanki, T., Basavaiah, N., Bhatt, N., Thakkar, M.G., Rastogi, B.K., 2016. Late Pleistocene–Holocene uplift driven terrace formation and climate-tectonic interplay from a seismically active intraplate setting: An example from Kachchh, western India. Journal of Asian Earth Sciences 124, 5567.CrossRefGoogle Scholar
Rajendran, C.P., Rajendran, K., 2002. Historical constraints on previous seismic activity and morphologic changes near the source zone of the 1819 Ran of Kachchh earthquake: further light on the penultimate event. Seismological Research Letters 73, 470479.CrossRefGoogle Scholar
Ramaswamy, V., Nath, B.N., Vethamony, P., Illangovan, D., 2007. Source and dispersal of suspended sediment in the macro-tidal Gulf of Kachchh. Marine Pollution Bulletin 54, 708719.CrossRefGoogle ScholarPubMed
Rao, S.R., 2000. Lothal: a Harappan port town. In: Lahiri, N. (Ed.), Decline and Fall of the Indus Civilization. Permanent Black, Delhi, pp. 146–15Google Scholar
Rao, V.P., Rajagopalan, G., Vora, K.H., Almeida, F., 2003. Late Quaternary sea level and environmental changes from relic carbonate deposits of the western margin of India. Proceedings of the Indian Academy of Science (Earth Planetary Science) 112, 125.Google Scholar
Rawat, Y.S., 2015. Coastal Sites; Possible Port Towns of Harappan time in Gujarat. In: Keller, S., Pearson, M. (Eds.), Port Towns of Gujarat. Primus Books, pp. 187215.Google Scholar
Ray, D., Shukla, A.D., 2018. The Mukundpura meteorite, a new fall of CM chondrite. Planetary & Space Science 151, 149154.CrossRefGoogle Scholar
Reid, I., Frostick, L.E., 1997. Channel form, flows and sediments in deserts. In: Thomas, D.S.G. (Ed.), Arid Zone Geomorphology. 2nd ed. John Wiley & Sons, pp. 205229.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rick, J.Y., James, T.L., Daidu, F., George, S.B., Hui-Ling, L., Ting-Ting, C., 2017. Land-sea duel in the late Quaternary at the mouth of a small river with high sediment yield. Journal of Asian Earth Science 143, 5976.Google Scholar
Rovere, A., Raymo, M.E., Vacchi, M., Lorscheid, T., Stocchi, P., Gomez-Pujol, L., Harris, D.L., Casella, E., O'Leary, M.J., Hearty, P.J., 2016. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world. Earth-Science Reviews 159, 404427.CrossRefGoogle Scholar
Roy, B., Merh, S.S., 1982. The Great Rann of Kutch: an intriguing Quaternary terrain. Recent Research in Geology 29, 519539.Google Scholar
Sampei, Y., Matsumoto, E., Kamei, T., Tokuoka, T., 1997. Sulfur and organic carbon relationship in sediments from coastal brackish lakes in the Shimane peninsula district, southwest Japan. Geochemical Journal 31, 245262.CrossRefGoogle Scholar
Sarkar, A., Deshpande-Mukherjee, A., Bera, M.K., Das, B., Juyal, N., Morthekai, P., Deshpande, R.D., Shinde, V.S., Rao, L.S., 2016. Oxygen isotope in archaeological bioapatites from India: Implications to climate change and decline of Bronze age Harappan civilization. doi: 10.1038/srep26555.CrossRefGoogle Scholar
Sarkar, A., Mukherjee, A.D., Sharma, S., Sengupta, T., Ram, F., Bera, M.K., Bera, S., et al. ., 2020. New evidence of early Iron Age to Medieval settlements from the southern fringe of Thar Desert (western Great Rann of Kachchh), India: Implications to climate-culture co-evolution. Archaeological Research in Asia 21, p.100163.CrossRefGoogle Scholar
Schulz, H., von Rad, U., Erlenkeuser, H., 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393(6680), 5457.CrossRefGoogle Scholar
Semeniuk, V., 2005. Tidal Flats. In: Schwartz, M.L. (Ed.), Encyclopedia of Coastal Science. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_317Google Scholar
Sengupta, T., Deshpande Mukherjee, A., Bhushan, R., Ram, F., Bera, M.K., Raj, H., Dabhi, A.J., et al. , 2020. Did the Harappan settlement of Dholavira (India) collapse during the onset of Meghalayan stage drought? Journal of Quaternary Science 35, 382395.CrossRefGoogle Scholar
Sharma, S., Chand, P., Bisht, P., Shukla, A.D., Bartarya, S.K., Sundriyal, Y.P., Juyal, N., 2016. Factors responsible for driving the glaciation in the Sarchu plain, eastern Zanskar Himalaya, during the late quaternary. Journal of Quaternary Science 31, 495–51.CrossRefGoogle Scholar
Sharma, S., Shukla, A.D., 2018. Factors governing the pattern of glacier advances since the Last Glacial Maxima in the transitional climate zone of the Southern Zanskar Ranges, NW Himalaya. Quaternary Science Reviews 201, 223240.CrossRefGoogle Scholar
Shennan, I., 2015. Handbook of sea-level research: Framing Research Questions. In: Shennan, I., Long, A.J., Horton, B.P. (Eds.), Handbook of sea-level research. John Wiley & Sons, West Sussex, UK, pp. 536553.Google Scholar
Shennan, I., Horton, B., 2002. Holocene land and sea-level changes in Great Britain. Journal of Quaternary Science 17, 511526.CrossRefGoogle Scholar
Shennan, I., Long, A.J., Horton, B.P. (Eds.), 2015. Handbook of sea-level research. John Wiley & Sons, West Sussex, UK.Google Scholar
Shukla, A.D., Bhandari, N., Shukla, P.N., 2002. Chemical signatures of the Permian-Triassic transitional environment in Spiti valley, India proceedings of catastrophic events and mass extinction: impacts and beyond. Geological Society of America Special Papers 356, 445454Google Scholar
Snelgrove, R., 1979. Migration of the Indus river, Pakistan in response to plate tectonic motion. Journal of the Geological Society of India 20, 392403.Google Scholar
Srivastava, K.M., 1991. Madinat Hamad Burial Mounds—1984–85. Bahrain National Museum.Google Scholar
Stanley, D.J., Warne, A.G., 1997. Holocene sea level changes and early human utilization of deltas. GSA Today 7, 17.Google Scholar
Stein, A., 1931. An archaeological tour in Gedrosia. http://cslrepository.nvli.in//handle/123456789/8617.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Tankard, A.J., Rogers, J., 1978. Late Cenozoic palaeoenvironments on the west coast of southern Africa. Journal of Biogeography 5, 319337.CrossRefGoogle Scholar
Taylor, M., Stone, G.W., 1996. Beach-Ridges: A Review. Journal of Coastal Research 12, 612621.Google Scholar
Taylor, S.R, McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlto.Google Scholar
Thanikaimoni, G., 1987. Mangrove Palynology. UNDP/UNESCO Regional Project on Training and Research on Mangrove Ecosystems, RAS/79/002, and the French Institute, Pondicherry.Google Scholar
Therrien, F., 2006. Depositional environments and fluvial system changes in the dinosaur bearing Sanpetru Formation (Late Cretaceous, Romania): post-orogenic sedimentation in an active extensional basin. Sedimentary Geology 192, 183205CrossRefGoogle Scholar
Thomas, P.J., Juyal, N., Kale, V.S., Singhvi, A.K., 2007. Luminescence chronology of late Holocene extreme hydrological events in the upper Penner river basin, South India. Journal of Quaternary Science 22, 747753.CrossRefGoogle Scholar
Tooth, S., 2000. Process, form and change in dry land rivers: a review of recent research. Earth-Science Reviews 51, 67107CrossRefGoogle Scholar
Tyagi, A.K., Shukla, A.D., Bhushan, R., Thakker, P.S., Thakkar, M.G., Juyal, N., 2012. Mid-Holocene sedimentation and landscape evolution in the western Great Rann of Kachchh, India. Geomorphology 151, 8998.CrossRefGoogle Scholar
Unnikrishnan, A.S., Gouveia, A.D., Vethamony, P., 1999. Tidal regime in Gulf of Kutch, west coast of India, by 2D model. Journal of waterway, port, coastal, and ocean engineering 125, 276284.CrossRefGoogle Scholar
Vacchi, M., Engelhart, S.E., Nikitina, D., Ashe, E.L., Peltier, W.R., Roy, K., Kopp, R.E., Horton, B.P., 2018. Postglacial relative sea-level histories along the eastern Canadian coastline. Quaternary Science Reviews 201, 124146.CrossRefGoogle Scholar
Vacchi, M., Rovere, A., Chatzipetros, A., Zouros, N., Firpo, M., 2014. An updated database of Holocene relative sea level changes in NE Aegean Sea. Quaternary International 328, 301310.CrossRefGoogle Scholar
van de Plassche, O., van der Borg, K., de Jong, A.F., 1998. Sea level–climate correlation during the past 1400 yr. Geology 26, 319322.2.3.CO;2>CrossRefGoogle Scholar
Vethamony, P., Babu, M.T., 2010. Physical processes in the Gulf of Kachchh: A review. volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Science 111, 497503.Google Scholar
Vora, K.H., Wagle, B.G., Veerayya, M., Almeida, F., Karisiddaiah, S.M., 1996. 1300 km long late Pleistocene-Holocene shelf edge barrier reef system along the western continental shelf of India: occurrence and significance. Marine Geology 134, 145162.CrossRefGoogle Scholar
Wang, P., 2012. Principles of sediment transport applicable in tidal environments. In: Davis, Richard A. Jr., Dalrymple, Robert W. (Eds.) Principles of Tidal Sedimentology. Springer, Dordrecht, pp. 1934.CrossRefGoogle Scholar
Wegmann, K.W., Pazzaglia, F.J., 2009. Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: Climatic, lithologic, and tectonic controls on terrace genesis in an active orogen. Quaternary Science Reviews 28, 137165.CrossRefGoogle Scholar
Wells, J.T., Coleman, J.M., 1984. Deltaic morphology and sedimentology, with special reference to the Indus River delta. In: Haq, B.U., Milliman, J.D. (Eds.), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan, Louisiana State University, LA.Google Scholar
Whitehouse, P.L., 2018. Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions. Earth Surface Dynamics 6, 401429.CrossRefGoogle Scholar
Willis, B.J., Behrensmeyer, A.K., 1994. Architecture of Miocene over bank deposits in northern Pakistan. Journal of Sedimentary Research B64, 6067.Google Scholar
Woodroffe, C.D., McLean, R.F., Polach, H., Wallensky, E., 1990. Sea level and coral atolls: Late Holocene emergence in the Indian Ocean. Geology 18, 6266.2.3.CO;2>CrossRefGoogle Scholar
Wright, R.P., Bryson, R.A., Schuldenrein, J., 2008. Water supply and history: Harappa and the Beas regional survey. Antiquity 82, 3748.CrossRefGoogle Scholar
Yadava, M.G., Ramesh, R., 1999. Speleothems—useful proxies for past monsoon rainfall. Journal of Scientific and Industrial Research 58, 339348.Google Scholar
Supplementary material: File

Sharma et al. supplementary material

Figures S1-S3 and Tables S1-S4

Download Sharma et al. supplementary material(File)
File 21.1 MB