Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-20T16:01:53.646Z Has data issue: false hasContentIssue false

Climatic Reconstruction in Europe for 18,000 YR B.P. from Pollen Data

Published online by Cambridge University Press:  20 January 2017

Odile Peyron
Affiliation:
Laboratoire de Géologie du Quaternaire, CEREGE, B.P. 80, 13545, Aix-en-Provence cedex 4, France Laboratoire de Botanique Historique et Palynologie, CNRS UA 1152, case 451, F-13397, Marseille cedex 20, France
Joël Guiot
Affiliation:
Laboratoire de Botanique Historique et Palynologie, CNRS UA 1152, case 451, F-13397, Marseille cedex 20, France
Rachid Cheddadi
Affiliation:
Laboratoire de Botanique Historique et Palynologie, CNRS UA 1152, case 451, F-13397, Marseille cedex 20, France
Pavel Tarasov
Affiliation:
Laboratoire de Botanique Historique et Palynologie, CNRS UA 1152, case 451, F-13397, Marseille cedex 20, France Department of Geography, Moscow State University, Vorob ‘evy Gory, 119899, Moscow, Russia
Maurice Reille
Affiliation:
Laboratoire de Botanique Historique et Palynologie, CNRS UA 1152, case 451, F-13397, Marseille cedex 20, France
Jacques-Louis de Beaulieu
Affiliation:
Laboratoire de Botanique Historique et Palynologie, CNRS UA 1152, case 451, F-13397, Marseille cedex 20, France
Sytze Bottema
Affiliation:
Biologisch-Archaeologisch Instituut, Rijkuniversiteit Groningen, Postraat 6, NL-9721, Groningen, the Netherlands
Valérie Andrieu
Affiliation:
Laboratoire de Botanique Historique et Palynologie, CNRS UA 1152, case 451, F-13397, Marseille cedex 20, France

Abstract

An improved concept of the best analogs method is used to reconstruct the climate of the last glacial maximum from pollen data in Europe. In order to deal with the lack of perfect analogs of fossil assemblages and therefore to obtain a more accurate climate reconstruction, we used a combination of pollen types grouped according to plant phenology and present climate constraints rather than pollen percentages for each individual taxon. The distribution of pollen taxa into plant functional types (PFTs) is aimed to reflect the vegetation in terms of biomes which have a wider distribution than a species. The climatic variables are then calibrated on these PFTs using an artificial neural network technique. The use of PFTs allowed us to deal with situations where pollen assemblages have only partial modern analogs. The method is applied to the glacial steppic vegetation in Europe, using 15 pollen records. North of the Pyrenees–Alps line, the reconstructed temperatures were lower than today: −30 ± 10°C for the temperature of the coldest month ( T c) and −12 ± 3°C for the annual mean ( T ann). South of that line, T c and T ann anomalies were respectively, −15 ± 5°C and −10 ± 5°C. The available moisture index and annual precipitation were also lower than present: −60 ± 20% north of Mediterranean Sea, (−800 ± 100 mm for precipitation). In Italy and Greece, the available moisture was 20% lower, with a precipitation anomaly of ca. −600 ± 200 mm. Southward, the moisture index was close to that at present (±20%), and precipitation was lower (−300 ± 300 mm).

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atanassova, J., Bozilova, E., 1994. Surface pollen samples from the western sector of the Black Sea. Annales of the University of Sofia, Biology Faculté. 84 5270.Google Scholar
Bartlein, P.J., Prentice, I.C., 1986. Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography. 13 3557.CrossRefGoogle Scholar
Beaulieu, J.L.de, Reille, M., 1984. A long Upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas. 13 111132.CrossRefGoogle Scholar
Beaulieu, J.L.de, Reille, M., 1992. The last climatic cycle at la Grande Pile, Vosges, France. A new profile. Quaternary Science Reviews. 11 431438.CrossRefGoogle Scholar
Bottema, S., 1979. Pollenanalytical investigations in Thessaly. Palaeohistoria. 21 1940.Google Scholar
Bottema, S., 1980. Palynological investigations in Crete. Review of Palaeobotany and Palynology. 31 193217.Google Scholar
Bottema, S., Bardoukah, Y., 1979. Modern pollen precipitation in Syria and Lebanon, and its relation to vegetation. Pollen et Spores. 21 427480.Google Scholar
Bottema, S., Woldring, H., Aytug, B., 1995. Late Quaternary vegetation history of northern Turkey. Palaeohistoria. 35–36 1372.Google Scholar
Caudill, M., Butler, C., 1992. Understanding Neural Networks: Basic Networks. The MIT Press.Google Scholar
Cheddadi, R., Yu, G., Guiot, J., Harrison, S.P., Prentice, C., 1997. The climate of Europe 6000 years ago. Climate Dynamics. 13 19.CrossRefGoogle Scholar
Science. 241 1988 10431052.Google Scholar
Crowley, T.J., Baum, S.H., 1997. Effect of vegetation on ice-age climate model simulations. Journal of Geophysical Research. 102 1646316480.Google Scholar
Follieri, M., Magri, D., Sadori, L., 1988. 250,000 year pollen record from Valle di Castiglione (Roma). Pollen et Spores. 30 329356.Google Scholar
Guiot, J., Pons, A., Beaulieu, J.L.de, Reille, M., 1989. A 140,000 year climatic reconstruction from two European records. Nature. 338 309313.CrossRefGoogle Scholar
Guiot, J., 1990. Methodology of palaeoclimatic reconstruction from pollen in France. Palaeogeography, Palaeoclimatology, Palaeoecology. 80 4969.CrossRefGoogle Scholar
Guiot, J., 1991. Structural characteristics of proxy-data and methods for quantitative climate reconstruction. Paläoklimaforschung. 6 271284.Google Scholar
Guiot, J., Harrison, S., Prentice, I.C., 1993. Reconstruction of Holocene Precipitation Patterns in Europe using Pollen and Lake-Level data. Quaternary Research. 40 139149.Google Scholar
Guiot, J., Beaulieu, J.L.de, Cheddadi, R., David, F., Ponel, P., Reille, M., 1993. The Climate in Western Europe during the last Glacial/Interglacial cycle derived from pollen and insect remains. Palaeogeography, Palaeoclimatology, Palaeoecology. 103 7394.CrossRefGoogle Scholar
Guiot, J., Cheddadi, R., Prentice, I.C., Jolly, D., 1996. A method of biome and land surface mapping from pollen data: Application to Europe 6000 years ago. Palaeoclimates. 1 311324.Google Scholar
Harrison, S.P., Prentice, I.C., Bartlein, P.J., 1992. Influence of insolation and glaciation on atmospheric circulation in the North Atlantic sector: Implications of GCM experiments for the Late Quaternary climatology of Europe. Quaternary Science Reviews. 11 283299.CrossRefGoogle Scholar
Harrison, S.P., Prentice, I.C., Guiot, J., 1993. Climatic controls of Holocene lake-level changes in Europe. Climate Dynamics. 8 189200.Google Scholar
Harrison, S.P., Yu, G., Tarasov, P., 1996. Late Quaternary lake-level record from northern Eurasia. Quaternary Research. 45 138159.Google Scholar
Huntley, B., Prentice, I.C., 1988. July temperatures in Europe from pollen data, 6000 years before present. Science. 241 687690.CrossRefGoogle ScholarPubMed
Joussaume, S., 1993. Paleoclimatic tracers: An investigation using an atmospheric general circulation model under ice age conditions, 1 desert dust. Journal of Geophysical research. 1 27672805.Google Scholar
Joussaume, S., Taylor, K., 1995. Status of the palaeoclimate modeling intercomparison project (PMIP). Proceedings of the First International AMIP Scientific Conference. World Meteorology Organization, Geneva, p. 425–430.Google Scholar
Klimaticheskii Atlas SSSR (Climatic Atlas of the USSR) (1960), 1, Gidrometeoizdat, Moscow.Google Scholar
Kupriyanova, L.A., 1965. Palinologiya serezhkotsvetnykh (Pollen Morphology of Betulaceae Species). Nauka, Moscow-Leningrad. Google Scholar
Kupriyanova, L.A., Aleshina, L.A., 1972. Pyl'tsa i spory rastenii Evropeiskoi chasti SSSR (Pollen and Spores of Plants from the European Part of the USSR). Nauka, Leningrad. Google Scholar
Kutzbach, J.E., Wright, H.E. Jr.,1985. Simulation of the climate of 18,000 years BP: Results for the north American/north Atlantic/European sector and comparison with the geologic record of north America. Quaternary Science Reviews. 4 147187.Google Scholar
Kutzbach, J.E., Webb, T. III, 1993. Conceptual basis for understanding Late-Quaternary climates. Global Climates Since the Last Glacial Maximum. Univ. of Minnesota Press, Minneapolis, London, p. 5–11.Google Scholar
Kutzbach, J. E., Gallimore, R., Harrison, S. P., Behling, P., Laarif, F., Selin, R, Climate simulations for the past 21,000 years, Quaternary Science Reviews.CrossRefGoogle Scholar
Leemans, R., Cramer, W., 1991. The IIASA Climate Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness on a Global Terrestrial Grid. International Institute of Applied Systems Analysis, Laxenburg. Google Scholar
Niklewski, J., Van Zeist, W., 1970. A Late Quaternary pollen diagram from northwestern Syria. Acta Botanica Neerlandica. 9 737754.Google Scholar
Peltier, W.R., 1994. Ice age paleotopography. Science. 265 195201.CrossRefGoogle ScholarPubMed
Peterson, G.M., Webb, T. III, Kutzbach, J.E., Van der Hammen, T., Wimjstra, T.A., Street, F.A., 1979. The continental record of environmental conditions at 18,000 B.P.: An initial evaluation. Quaternary Research. 12 4782.Google Scholar
Pons, A., Reille, M., 1988. The Holocene and Upper Pleistocene pollen record from Padul, Granada, Spain: A new study. Palaeogeogeography, Palaeoclimatology, Palaeoecology. 66 243263.Google Scholar
Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., Solomon, A.M., 1992. A global biome model based on plant physiology and dominance, soils properties and climate. Journal of Biogeography. 19 117134.Google Scholar
Prentice, I.C., Guiot, J., Harrison, S.P., 1992. Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature. 360 658670.Google Scholar
Prentice, I.C., Sykes, M.T., Cramer, W., 1993. A simulation model for the transient effects of climate change on forest landscapes. Ecological Modelling. 65 5170.Google Scholar
Prentice, I.C., Sykes, M.T., Lautenschlager, M., Harrison, S.P., Denissenko, O., Bartlein, P., 1993. Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecology and Biogeography Letters. 3 6776.Google Scholar
Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., 1996. Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics. 12 185194.Google Scholar
Reille, M., Beaulieu, J.L.de, 1988. History of the Würm and Holocene vegetation in western Velay (Massif Central, France): A comparison of pollen analysis from three corings at Lac du Bouchet. Review of Palaeobotany and Palynology. 54 233248.CrossRefGoogle Scholar
Reille, M., Andrieu, V., 1995. The late Pleistocene and Holocene in the Lourdes Basin, Western Pyrénées, France: New pollen analytical and chronological data. Vegetation History and Archaeobotany. 4 121.Google Scholar
Tarasov, P. E., Webb III, T., Andreev, A. A., Afanas'eva, N. B., Berezina, N. A., Bezusko, L. G., Blyakharchuk, T. A., Bolikhovskaya, N. S., Cheddadi, R., Chernavskaya, M. M., Chernova, G. M., Dorofeyuk, N. I., Dirksen, V. G., Elina, G. A., Filimonova, L. V., Glebov, F. Z., Guiot, J., Gunova, V. S., Harrison, S. P., Jolly, D., Khomutova, V. I., Kvavadze, E. V., Osipova, I. M., Panova, N. K., Prentice, I. C., Saarse, L., Sevastyanov, D. V., Volkova, V. S., Zernitskaya, V. P, Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia, Journal of Biogeography.CrossRefGoogle Scholar
Till, C., Guiot, J., 1990. Reconstruction of precipitation in Morocco since AD 1100 based on cedrus Atlantica tree-ring widths. Quaternary Research. 33 337351.Google Scholar
Van der Hammen, T, 1974, The interpretation and correlation of pollen diagrams from temperate Europe to tropical South America, In, Les methodes quantitatives d'etude des variations du climat au cours du Pleistocene. Google Scholar
Van Zeist, W., Timmers, R.W., Bottema, S., 1970. Studies of modern and Holocene pollen in Southeastern Turkey. Palaeohistoria. 14 1939.Google Scholar
Van Zeist, W., Woldring, H., Stapert, D., 1975. Late quaternary vegetation and climate of southwestern Turkey. Palaeohistoria. 17 53144.Google Scholar
Van Zeist, W., Bottema, S., 1977. Palynological investigation in western Iran. Palaeohistoria. 19 1985.Google Scholar
Van Zeist, W., Bottema, S., 1982. Vegetational history of the Eastern Mediterranean and the near east during the last 20,000 years. BintliffI, J.L., Van Zeist, W., Palaeoclimates, Palaeoenvironments and Human Communities in the Eastern Mediterranean Region in Later Prehistory. BAR International Series, Oxford, 277321.Google Scholar
Watts, W.A., 1985. A long pollen record from Laghi di Monticchio, southern Italy: A preliminary account. Journal of Geology of London. 142 491499.Google Scholar
Watts, W.A., 1986. Stages of climatic change from full glacial to Holocene in northwest Spain, southern France and Italy: A comparison of the atlantic coast and the mediterranean basin. Current issues in climate research. Ghazi, A., Fantechi, R., Proceedings of the EC Climatology Programme Symposium. Sophia Antipolis.Google Scholar
Webb, T., Clark, D.R. III, 1977. Calibrating micropaleontological data in climatic terms: a critical review. Annals of the New York Academy of Science. 288 93118.Google Scholar
Wijmstra, T.A., 1969. Palynology of the first 30 metres of a 120 m deep section in Northern Greece. Acta Botanica Neerlandica. 18 511527.Google Scholar
Woodward, F.I., 1987. Climate and Plant Distribution. Cambridge Univ. Press, Cambridge. Google Scholar