Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-21T10:39:03.447Z Has data issue: false hasContentIssue false

Historic Eruptions of Tambora (1815), Krakatau (1883), and Agung (1963), their Stratospheric Aerosols, and Climatic Impact

Published online by Cambridge University Press:  20 January 2017

Michael R. Rampino
Affiliation:
NASA Goddard Institute for Space Studies, Goddard Space Flight Center, New York, New York 10025, and Department of Geological Sciences, Columbia University, New York, New York 10027
Stephen Self
Affiliation:
Department of Geology, Arizona State University, Tempe, Arizona 85287

Abstract

Decreases in surface temperatures after the eruptions of Tambora (1815), Krakatau (1883), and Agung (1963) were of similar magnitude, even though the amount of material (dust and volatiles) injected into the stratosphere by these three events differed greatly. Large amounts of fine ash and volatiles were dispersed into the upper atmosphere by Krakatau and Tambora; the Agung eruption in 1963 was a much smaller, vulcanian-type eruption which injected dust and volatiles into the stratospheric aerosol layer more directly. Analyses of magmatic volatiles indicate that the Agung eruption was proportionately richer in SO2 and Cl than either Tambora or Krakatau. Relative amounts of fine ash produced by the Tambora, Krakatau, and Agung eruptions are estimated at about 150:20:1, whereas the masses of atmospheric sulfate aerosols produced were on the order of 7.5:3:1.

Decreases in surface temperature of a few tenths of a degree C for several years following volcanic eruptions are primarily a result of the sulfate aerosols, rather than of the silicate dust. The similarity in the atmospheric response after these three eruptions supports the idea of limiting mechanisms on volcanic stratospheric-aerosol loading, which is suggested by microphysical processes of aerosol particles. Fluctuations in stratospheric aerosol optical depth seem to be controlled to a large degree by high-intensity sulfur-rich eruptions (e.g., Agung, 1963), which may however be relatively small in total ejecta volume. Such eruptions leave little geologic record, but appear as acidity peaks in polar ice cores.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, L.W. Alvarez, W. Asaro, F. Michel, H.V. (1980). Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208. 10951108.Google Scholar
Anderson, A.T. (1974). Chlorine, sulfur and water in magmas and oceans. Geological Society of America Bulletin 85. 14851492.2.0.CO;2>CrossRefGoogle Scholar
Angell, J.K. Korshover, J. (1975). Estimate of the global change in tropospheric temperature between 1958 and 1973. Monthly Weather Reviews 103. 10071012.Google Scholar
Angell, J.K. Korshover, J. (1977). Estimate of the global change in temperature, surface to 100 mb, between 1958 and 1975. Monthly Weather Reviews 105. 375385.2.0.CO;2>CrossRefGoogle Scholar
Baldwin, B. Pollack, J.B. Summers, A. Toon, O.B. Sagan, C. Van Camp, W. (1976). Stratospheric aerosols and climate change. Nature (London) 263. 551555.Google Scholar
Booth, P.W. Matthews, S.W. Sisson, R.E. (1963). Bali's sacred mountain blows its top. National Geographic 124. 436458.Google Scholar
Bradley, R.S. England, J. (1978). Influence of volcanic dust on glacier mass balance at high latitudes. Nature (London) 271. 736738.Google Scholar
Bray, J.R. (1974). Volcanism and glaciation during the past 40 millennia. Nature (London) 252. 679680.CrossRefGoogle Scholar
Bray, J.R. (1977). Pleistocene volcanism and glacial initiation. Science 197. 251254.Google Scholar
Bryson, R.A. Goodman, B.M. (1980). Volcanic activity and climatic changes. Science 207. 10411044.Google Scholar
Cadle, R.D. Kiang, C.S. Louis, J.-F. (1976). The global scale dispersion of the eruption clouds from major volcanic eruptions. Journal of Geophysical Research 81. 31253132.Google Scholar
Cadle, R.D. Lazrus, A.L. Hubert, B.J. (1979). Atmospheric implications of studies of Central American volcanic eruption clouds. Journal of Geophysical Research 84. 69616968.CrossRefGoogle Scholar
Castleman, A.W. Jr., Munkelwitz, H.R. Manowitz, B. (1974). Isotopic studies of the sulfur component of the stratospheric aerosol layer. Tellus 26. 222234.Google Scholar
Deirmendjian, D. (1973). On volcanic and other particulate turbidity anomalies. Advances in Geophysics 16. 267296.Google Scholar
Dyer, A.J. Hicks, B.B. (1968). Global spread of volcanic dust from the Bali eruption of 1963. Quarterly Journal of the Royal Meteorological Society 94. 545554.CrossRefGoogle Scholar
Eddy, J.A. (1976). The Maunder Minimum. Science 192. 11891202.Google Scholar
Eichelberger, J.C. Westrich, H.R. (1981). Magmatic volatiles in explosive rhyolitic eruptions. Geophysical Research Letters 8. 757760.CrossRefGoogle Scholar
Ellsaesser, H.W. (1977). Comments on “Estimate of the global change in temperature, surface to 100 mb, between 1958 and 1975”. Monthly Weather Reviews 105. 12001201.2.0.CO;2>CrossRefGoogle Scholar
Farlow, N.H. Oberbeck, V.R. Snetsinger, K.G. Ferry, G.J. Polkowski, G. Hayes, D.M. (1981). Size distributions and mineralogy of ash particles in the stratosphere from eruptions of Mount St. Helens. Science 211. 832834.CrossRefGoogle ScholarPubMed
Gentilli, J. (1948). Present-day volcanicity and climatic change. Geological Magazine 85. 172175.CrossRefGoogle Scholar
Groveman, B.S. Landsberg, H.E. (1979). Reconstruction of northern hemisphere temperature: 1570–1880. Meteorology Program, University of Maryland, Publication No. 79-181.Google Scholar
Hammer, C.U. Clausen, H.B. Dansgaard, W. (1980). Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature (London) 288. 230235.CrossRefGoogle Scholar
Hamill, P. Toon, O.B. Kiang, C.S. (1977). Microphysical processes affecting stratospheric aerosol particles. Journal of the Atmospheric Sciences 34. 11041119.Google Scholar
Hansen, J.E. Wang, W.C. Lacis, A.A. (1978). Mount Agung eruption provides test of a global climatic perturbation. Science 199. 10651068.Google Scholar
Harris, D.M. 1979a. Geobarometry and geothermometry or individual crystals using H2O, CO2, S and major element concentrations in silicate melt inclusions: The 1959 eruption of Kilauea, Hawaii. Geological Society of America, Abstracts with Programs 11. 439.Google Scholar
Harris, D.M. 1979b. Pre-eruption variations of H2O, S and Cl in a subduction zone basalt. EOS Abstracts 60. 968.Google Scholar
Haughton, D.R. Roeder, P.L. Skinner, B.J. (1974). Solubility of sulphur in mafic magmas. Economic Geology 69. 451467.CrossRefGoogle Scholar
Hoyt, D.V. (1978). An explosive eruption in the Southern Hemisphere in 1928. Nature (London) 275. 630632.Google Scholar
Humphreys, W.J. (1940). Physics of the Air McGraw-Hill, New York.Google Scholar
Hunt, B.G. (1977). A simulation of the possible consequences of a volcanic eruption on the general circulation of the atmosphere. Monthly Weather Reviews 105. 247260.2.0.CO;2>CrossRefGoogle Scholar
Hunten, D.M. (1975). Residence times of aerosols and gases in the stratosphere. Geophysical Research Letters 2. 2628.Google Scholar
Jensen, H.I. (1916). Report on the petrology of the alkali rocks of Mt. Erebus, Antarctica. Report of the British Antarctic Expedition 1907–1909: Geology 7. 93128.Google Scholar
Johnston, D.A. (1978). Volatiles, magma mixing and mechanisms of eruption at Augustine Volcano, Alaska. Unpublished Ph.D. dissertation University of Washington.Google Scholar
Jones, P.D. Wigley, T.M.L. (1980). Northern hemisphere temperatures, 1881–1979. Climate Monitor 9. 4347.Google Scholar
Junghuhn, F. (1850). Java Vol. 2. 12491264.Google Scholar
Kennett, J.P. Thunell, R.C. (1975). Global increase in Quaternary explosive volcanism. Science 187. 497503.CrossRefGoogle ScholarPubMed
Köppen, W. (1914). Lufttemperaturen, Sonnenflecke und vulkanausbrucke. Meteorologische Zeitschrift 31. 305328.Google Scholar
Kukla, G.J. Kukla, H.J. (1974). Increased surface albedo in the northern hemisphere. Science 183. 709714.Google Scholar
Kyle, P.R. (1977). Mineralogy and glass chemistry of recent volcanic ejecta from Mt. Erebus, Ross Island Antarctica. New Zealand Journal of Geology and Geophysics 20. 11231146.Google Scholar
Lamb, H.H. (1970). Volcanic dust in the atmosphere; with its chronology and assessment of its meteorological significance. Philosophical Transactions of the Royal Society of London A 266. 425533.Google Scholar
Landsberg, H.E. Albert, J.M. (1974). The summer of 1816 and volcanism. Weatherwise 27. 6366.Google Scholar
Lazrus, A.L. Cadle, R.D. Gandrud, R.W. Greenburg, J.P. Hubert, B.J. Rose, W.I. Jr.. (1979). Trace chemistry of the stratosphere and of volcanic eruption plumes. Journal of Geophysical Research 84. 78697875.Google Scholar
Manley, G. (1974). Central England temperatures: Monthly means 1659–1973. Quarterly Journal of the Royal Meteorological Society 100. 389405.Google Scholar
Mass, C. Schneider, S.H. (1978). Statistical evidence on the influence of sunspots and volcanic dust on long-term temperature records. Journal of the Atmospheric Sciences 34. 19952008.Google Scholar
McInturff, R.M. Miller, A.J. Angell, J.K. Korshover, J. (1971). Possible effects on the stratosphere of the 1963 Mt. Agung eruption. Journal of the Atmospheric Sciences 28. 13041307.Google Scholar
Meinel, A.B. Meinel, M.P. (1964). Height of the glow stratum from the eruption of Agung on Bali. Nature (London) 201. 657658.CrossRefGoogle Scholar
Melson, W.G. Hopson, C.A. Kienle, C.F. (1980). Petrology of tephra from the 1980 eruption of Mt. St. Helens. Geological Society of America, Abstracts with Programs 12. 482.Google Scholar
Mendonca, B.G. Hanson, K.J. DeLuisi, J.J. (1978). Volcanically related secular trends in atmospheric transmission at Mauna Loa Observatory, Hawaii. Science 202. 513515.Google Scholar
Miles, M.K. (1978). Predicting temperature trend in the Northern Hemisphere to the 2000year Nature (London) 276. 356359.Google Scholar
Mossop, S.C. (1964). Volcanic dust collected at an altitude of 20 km. Nature (London) 203. 824827.Google Scholar
Mossop, S.C. (1965). Stratospheric particles at 20 km altitude. Geochimica et Cosmochimica Acta 29. 201207.CrossRefGoogle Scholar
Murai, I. (1961). A study of the textural characteristics of pyroclastic flow deposits in Japan. Bulletin of the Earthquake Research Institute, Tokyo University 39. 133248.Google Scholar
Murrow, P.J. Rose, W.I. Jr., Self, S. (1980). Determination of the total grain size distribution in a vulcanian eruption column, and its implications to stratiospheric aerosol perturbation. Geophysical Research Letters 7. 893896.Google Scholar
Neeb, G.A. (1943). The Snellius Expedition in the eastern part of the Netherlands East-Indies. The Snellius Expedition Report 5. 55268 Pt. 3.Google Scholar
Newell, R.E. (1970). Stratospheric temperature change from the Mt. Agung volcanic eruption of 1963. Journal of the Atmospheric Sciences 27. 977978.2.0.CO;2>CrossRefGoogle Scholar
Newell, R.E. Weare, B.C. (1976). Factors governing tropospheric mean temperature. Science 194. 14131414.Google Scholar
Newhall, G.G. Self, S. (1982). The Volcanic Explosivity Index (VEI): An estimate of explosive magnitude of historic eruptions. Journal of Geophysical Research 87. 12311238.Google Scholar
Ninkovich, D. Donn, W.L. (1976). Explosive Cenozoic volcanism and climatic implications. Science 194. 899906.Google Scholar
Ninkovich, D. Sparks, R.S.J. Ledbetter, M.T. (1978). The exceptional magnitude and intensity of the Toba eruption, Sumatra: An example of the use of deep-sea tephra layers as a geological tool. Bulletin Volcanologique 41 No. 3 113.CrossRefGoogle Scholar
Oliver, R.C. (1976). On the response of hemispheric mean temperature to stratospheric dust: An empirical approach. Journal of Applied Meterology 15. 933950.Google Scholar
Petroechevsky, W.A. (1949). A contribution to the knowledge of the Gunung Tambora (Sumbawa). Tijdschrift der Koninklijke Nederlandsche Aard. Genoot. 66. 688703.Google Scholar
Philipps, O. (1859). De Tambora. Natuurwetenschappelijk Tijdschrift voor Nederlandsch Indie 158164 part 18.Google Scholar
Pollack, J.B. Toon, O.B. Sagan, C. Summers, A. Baldwin, B. Van Camp, W. (1976). Volcanic explosions and climatic change: A theoretical assessment. Journal of Geophysical Research 81. 10711083.Google Scholar
Porter, S.C. (1981). Recent glacier variations and volcanic eruptions. Nature (London) 291. 139142.Google Scholar
Rampino, M.R. Self, S. Fairbridge, R.W. (1979). Can rapid climatic change cause volcanic eruptions?. Science 206. 826829.Google Scholar
Reiter, E.R. (1969). Atmospheric Transport Processes. Part 1: Energy Transfers and Transformations Atomic Energy Commission, Oak Ridge, TennU.S. Atomic Energy Commission Critical Review Series.Google Scholar
Robock, A. (1981). The Mount St. Helens volcanic eruption of 18 May 1980: Minimal climatic effect. Science 212. 13831384.Google Scholar
Rose, W.I. (1977). Scavenging of volcanic aerosol by ash: Atmospheric and volcanologic implications. Geology 5. 621624.Google Scholar
Rose, W.I. Stoiber, R.E. Malinconico, L.L. (1982). Eruptive gas compositions and fluxes of explosive volcanoes: Budget of S and Cl emitted from Fuego volcano, Guatemala. Andesites. Thorpe, R.S. Wiley, New York. 669676.Google Scholar
Rose, W.I. Hoffman, M.J. (1982). The May 18, 1980 eruption of Mt. St. Helens: The nature of the eruption with an atmospheric perspective. NASA/IFAORS Symposium on Mt. St. Helens Eruption. Spectrum Press, Hampton, Virginiain press.Google Scholar
Rosin, P.O. Rammler, E. (1934). Die Kornzusammensetzung des Mahlgutes im Lichte der Wahrscheinlich Keitslehre. Kolloid Zeitschrift 67. 1626.CrossRefGoogle Scholar
Ross, J.T. (1826). Narrative of the effects of the eruption from the Tambora Mountain on the island of Sumbawa on the 11th and 12th of April 1815, communicated by the President of the Batavia Society. Verhandelingen van het Batavia Genootschap van Kunsten en Wetenschappen 343360 part 8.Google Scholar
Rossow, W.B. (1978). Cloud microphysics: Analysis of the clouds of Earth, Venus, Mars, and Jupiter. Icarus 36. 150.Google Scholar
Self, S. Rampino, M.R. (1981). The 1883 eruption of Krakatau. Nature (London) 294. 699704.Google Scholar
Self, S. Rampino, M.R. Barbera, J.J. (1981). The possible effects of large 19th and 20th century volcanic eruptions on zonal and hemispheric surface temperatures. Journal of Volcanology and Geothermal Research 11. 4160.Google Scholar
Simkin, T. Siebert, L. McClelland, L. Bridge, D. Newhall, C. Latter, J.H. (1981). Volcanoes of the World Hutchinson Ross, Stroudsburg, Penn.Google Scholar
Sparks, R.S.J. Walker, G.P.L. (1977). The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites. Journal of Volcanology and Geothermal Research 2. 329341.Google Scholar
Sparrow, J.G. (1971). Stratospheric properties and Bali dust. Nature (London) 229. 107.Google Scholar
Stehn, C.E. (1929). The geology and volcanism of the Krakatau group. Guidebook for 4th Pacific Science Congress. 155.Google Scholar
Stommel, H. Stommel, E. (1979). The Scientific Americanyear without a summer 240 No. 6. 176186.Google Scholar
Symons, G.J. (1888). The eruption of Krakatau and Subsequent Phenomena: Report of the Krakatau Committee of the Royal Society of London Trubner, London.Google Scholar
Taylor, B.L. Gal-Chen, T. Schneider, S.H. (1980). Volcanic eruptions and long-term temperature records: An empirical search for cause and effect. Quarterly Journal of the Royal Meteorological Society 196. 175199.Google Scholar
Toon, O.B. Pollack, J.B. (1980). Atmospheric aerosols and climate. American Scientist 68. 268278.Google Scholar
Toon, O.B. Turco, R.P. Whitten, R. Hamill, P. (1981). Implications of stratospheric aerosol measurements for models of aerosol formation and evolution. Geophysical Research Letters 8. 2325.CrossRefGoogle Scholar
Verbeek, R.D.M. (1884). The Krakatau eruption. Nature (London) 30. 1015.Google Scholar
Verbeek, R.D.M. (1886). Krakatau. Imprimerie de l'Etat, Batavia, Indonesia.Google Scholar
Volz, F.E. (1970). Atmospheric turbidity after the Agung eruption of 1963 and size distribution of the volcanic aerosol. Journal of Geophysical Research 75. 51855194.Google Scholar
Walker, G.P.L. (1979). A volcanic ash generated by explosions where ignimbrite entered the sea. Nature (London) 281. 642646.CrossRefGoogle Scholar
Walker, G.P.L. (1981). Generation and dispersal of fine ash and dust by volcanic eruptions. Journal of Volcanology and Geothermal Research 11. 8192.Google Scholar
Wexler, H. 1951a. On the effects of volcanic dust on isolation and weather. Bulletin of the American Meteorological Society 32. 1015.Google Scholar
Wexler, H. 1951b. Spread of the Krakatoa volcanic dust cloud as related to the high-level circulation. Bulletin of the American Meteorological Society 32. 4851.Google Scholar
Williams, H. (1941). Calderas and their origin. University of California at Berkeley Publications in Geological Science 25. 239346.Google Scholar
Zen, M.T. Hadikusumo, D. (1965). Preliminary report on the 1963 eruption of Mt. Agung in Bali (Indonesia). Bulletin Volcanologique 27. 269299.Google Scholar