Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T05:58:24.880Z Has data issue: false hasContentIssue false

Holocene Paleohydrology of the Tropical Andes from Lake Records

Published online by Cambridge University Press:  20 January 2017

Mark B. Abbott
Affiliation:
Department of Geosciences, Morrill Science Center, University of Massachusetts, Box 35820, Amherst, Massachusetts, 01003-5820
Geoffrey O. Seltzer
Affiliation:
Department of Earth Sciences, Heroy Geology Laboratory, Syracuse University, Syracuse, New York, 13244-1070
Kerry R. Kelts
Affiliation:
Limnological Research Center, University of Minnesota, 220 Pillsbury Hall, 310 Pillsbury Dr SE, Minneapolis, Minnesota, 55455
John Southon
Affiliation:
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, P.O. Box 808, L-397, Livermore, California, 94551-9900

Abstract

Two century-scale time series in northern Bolivia constrain the ages of abrupt changes in the physical, geochemical, and biological characteristics of sediments obtained from lakes that formed during deglaciation from the late Pleistocene glacial maximum. The watersheds of Laguna Viscachani (16°12′S, 68°07′W, 3780 m) and Lago Taypi Chaka Kkota (16°13′S, 68°21′W, 4300 m), located on the eastern and western slopes of the Cordillera Real, respectively, contain small cirque glaciers. A high-resolution chronology of the lake sediments is provided by 23 AMS14C dates of discrete macrofossils. Late Pleistocene glaciers retreated rapidly, exposing the lake basins between 10,700 and 970014C yr B.P. The sedimentary facies suggest that after 890014C yr B.P. glaciers were absent from the watersheds and remained so during the middle Holocene. An increase in the precipitation–evaporation balance is indicated above unconformities dated to ∼230014C yr B.P. in both Lago Taypi Chaka Kkota and Laguna Viscachani. An abrupt increase in sediment accumulation rates after 140014C yr B.P. signals the onset of Neoglaciation. A possible link exists between the observed millennial-scale shifts in the regional precipitation–evaporation balance and seasonal shifts in tropical insolation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M. B.(1995). Holocene climatic variability for lake sites in the Bolivian Andes and interior Alaska based on sedimentology and radiocarbon dating by accelerator mass spectrometry. Unpublished Ph.D. dissertation, University of Minnesota.Google Scholar
Abbott, M. B. Binford, M. W. Brenner, M.andKelts, K. R.(in press). A 3500 14C yr high-resolution record of lake level changes in Lake Titicaca, South America. Quaternary Research.Google Scholar
Aceituno, P.andMontecinos, A.(1993). Circulation anomalies associated with dry and wet periods in the South American Altiplano. In “Fourth International Conference on Southern Hemisphere Meteorology and Oceanography, American Meteorological Society," pp. 330331.Google Scholar
Berger, A. (1978a). Long-term variations of daily insolation and Quaternary climatic changes. Journal of Atmospheric Science 35, 23622367.2.0.CO;2>CrossRefGoogle Scholar
Berger, A. (1978b). A simple algorithm to compute long term variations of daily or monthly insolation. Contribution No. 18, Universit" Cathol-ique de Louvian, Institut d'Astronomie et de Geophysique G. Lemaitre, Louvian-la-Neuve, B-1348 Belgique.Google Scholar
Berger, A.andLoutre, M. F.(1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Binford, M. W. Kolata, A. L. Brenner, M. Janusek, J. Abbott, M. B.andCurtis, J. H.(in press). Climate variation and the rise and fall of an Andean civilization. Quaternary Research.Google Scholar
DeMaster, D. J.(1979). The marine budgets of silica and 32Si. Unpublished Ph.D. dissertation, Yale University, New Haven.Google Scholar
DeMaster, D. J.(1981). The supply and accumulation of silica in the marine environment. Geochemica et Cosmochimica Acta 45, 17151732.CrossRefGoogle Scholar
Edwards, R. L. Beck, W. J. Burr, G. S. Donahue, D. J. Chappell, J. M. A. Bloom, A. L. Druffel, E. R. M.andTaylor, F. W.(1993). A large drop in atmospheric 6C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260, 962968.Google Scholar
Fisher, M. M. Brenner, M.andReddy, K. R.(1992). A simple, inexpensive piston corer for collecting undisturbed sediment/water interface profiles. Journal of Paleolimnology 7, 157161.Google Scholar
Francou, B. Ribstein, P. Saravia, R.andTiriau, E.(1995). Monthly balance and water discharge of an inter-tropical glacier: Zongo Glacier, Cordillera Real, Bolivia 16"S. Journal of Glaciology 41, 6167.CrossRefGoogle Scholar
Gouze, P. Argollo, J. Saliege, J.-F.andServant, M.(1986). Interpr"tation pal"oclimatique des oscillations des glaciers au cours des 20 derniers mill6naires dans les régions tropicales: exemple des Andes Boliviennes. Comptes Rendus de L'Acad"mie des Sciences Paris, S"rie II 303, 219223.Google Scholar
Hoffman, J. A. J.(1975). “Climatic Atlas of South America.” World Meteorological Organization, Ginebra, Hungary.Google Scholar
Kessler, A.(1988). “Die Schwankungen des Wasserhaushaltes de s"dameri-kanischen Altiplano und das Weltklima," v. Jahrbuch der Geograph-ischen Gesellschaft zu Hannover, 139159.Google Scholar
Killops, S. D.andKillops, V. J.(1993). “An Introduction to Organic Geochemistry.” Longman Scientific & Technical, New York.Google Scholar
Kutzabach, J. E.andGuetter, P. J.(1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. Journal of the Atmospheric Sciences 43, 17261759.Google Scholar
Mourguiart, P.(1990). Une approche nouvelle du probl"me pos" par les reconstrutions des pal"oniveaux lacustres: utilisation d'une fonction de transfert bas"e sur les faunes d'ostracodes. G"odynamique 5, 151166.Google Scholar
Ribstein, P. Tiriau, E. Francou, B.andSaravia, R.(1995). Tropical climate and glacier hydrology: a case study in Bolivia. Journal of Hydrology 165, 221234.Google Scholar
Roche, M. A. Bourges, J. C.andMattos, R.(1992). Climatology and hydrology of the Lake Titicaca basin. In “Lake Titicaca: a synthesis of limnological knowledge” ( Dejoux, C.and litis, A.Eds.), pp. 6383. Kluwer, Boston.CrossRefGoogle Scholar
Seltzer, G. O.(1990). Recent glacial history and paleoclimate of the Peruvian-Bolivian Andes. Quaternary Science Reviews 9, 137152.Google Scholar
Seltzer, G. O.(1991). Glacial history and climate change in the Peruvian-Bolivian Andes. Unpublished Ph.D. dissertation, University of Minnesota.Google Scholar
Seltzer, G. O.(1992). Late Quaternary glaciation of the Cordillera Real, Bolivia. Journal of Quaternary Science 7, 8798.CrossRefGoogle Scholar
Seltzer, G. O.(1994). A lacustrine record of late Pleistocene climatic change in the subtropical Andes. Boreas 23, 105111.Google Scholar
Seltzer, G. O. Rodbell, D. T.andAbbott, M. B.(1995). Andean Glacial Lakes and Climate Variability Since the Last Glacial Maximum. Bulletin de l'lnstitut Francais d'"tudes Andines,24, 539550.CrossRefGoogle Scholar
Servant, M.andFontes, J.-C.(1978). Les Lacs quaternaires des hauts plateaux des Andes boliviennes: premieres interpretations pal6oclimat- iques. Cahiers de l'ORSTOM, S"rie G"ologique 10, 923.Google Scholar
Stuiver, M.andReimer, P. J.(1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Thompson, L. G. Mosley-Thompson, E. Bolzan, J. F.andKoci, B. R.(1985). A 1500-yr record of tropical precipitation in ice cores from the Quelccaya Ice Cap, Peru. Science 229, 971973.Google Scholar
Thompson, L. G. Mosley-Thompson, E.andMorales, B.(1984). El Ni"o Southern Oscillation events recorded in the stratigraphy of the tropical Quelccaya ice cap, Peru. Science 226, 5053.Google Scholar
Wirrmann, D.andFernando De Oliveira Almeida, L.(1987). Low Holocene level (7700 to 3650 years ago) of Lake Titicaca (Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 59, 315323.Google Scholar
Wirrmann, D.andMourguiart, P.(1995). Late Quaternary spatio-temporal limnological variations in the Altiplano of Bolivia and Peru. Quaternary Research 43, 344354.CrossRefGoogle Scholar
Wirrmann, D. Mourguiart, P.andFernando De Oliveira Almeida, L.(1990). Holocene sedimentology and ostracods distribution in Lake Titicaca-paleohydrological interpretations. In “Quaternary of South America and Antarctic Peninsula, Vol. 6" ( Rabassa, J.Ed), pp. 89129. A. A.Google Scholar
Balkema, Rotterdam. Wright, H. E. Mann, D. H.andGlaser, P. H.(1984). Piston corers for peat and lake sediments. Ecology 65, 657659.Google Scholar