Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T14:48:46.303Z Has data issue: false hasContentIssue false

Landscape response to hydroclimate variability shown by the post-Bonneville Flood (ca. 18 ka) fluvial-geomorphic history of the middle Snake River, Idaho, USA

Published online by Cambridge University Press:  19 December 2022

Steven N. Bacon*
Affiliation:
Desert Research Institute, 2215 Raggio Parkway, Reno, Nevada 89512, USA
Thomas F. Bullard
Affiliation:
Desert Research Institute, 2215 Raggio Parkway, Reno, Nevada 89512, USA
Vaughn Kimball
Affiliation:
Idaho Power Company, 1221 W. Idaho Street, Boise, Idaho 83702, USA
Christina M. Neudorf
Affiliation:
Desert Research Institute, 2215 Raggio Parkway, Reno, Nevada 89512, USA
Shane A. Baker
Affiliation:
Idaho Power Company, 1221 W. Idaho Street, Boise, Idaho 83702, USA
*
*Corresponding author email address: sbacon@dri.edu

Abstract

The fluvial geomorphology and stratigraphy on the middle Snake River at Bancroft Springs, Idaho, provide evidence for numerous episodes of Snake River aggradation and incision since the Bonneville Flood at ca. 18 ka. A suite of seven terraces ranging from 20–1 m above modern bankfull elevation records multiple cut-and-fill cycles during the latest Pleistocene and Holocene in response to local base-level controls, variations in sediment supply, and hydroclimate change. Radiocarbon and luminescence dating show that the ages of fluvial aggradation generally coincide with increased sediment supply and likely wetter hydroclimate during onset of the Younger Dryas stadial (ca. 13.2 ka), deglaciation and termination of the Younger Dryas stadial (ca. 11.3 ka), Early Holocene cooling (ca. 8.8 ka), and Neoglacial (ca. 4.5, 2.9, 1.1 ka). Six intervening periods of incision and channel stability may also reflect either reduced sediment supply, drier hydroclimate, or both. The terrace chronology can be correlated to a variety of local and regional paleoclimate proxy records and corresponds well with periods of continental- and global-scale rapid climate change during the Holocene. The fluvial record demonstrates the geomorphic response and sensitivity of large river systems to changes in hydroclimate variability, which has important implications for inferring paleoenvironmental conditions in the region.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, S.T., Carter, R.M., 2007. Quaternary stratigraphy—sequence stratigraphy. In: Elias, S.A. (Ed.), Encyclopedia of Quaternary Science. Elsevier, Amsterdam, p. 28562869.CrossRefGoogle Scholar
Allen, K.C., 2020. Late Holocene Paleoflood Hydrology of the Snake River in the Lower Hells Canyon, Idaho. M.Sc. Thesis, Central Washington University, Ellensburg, Washington, 86 pp.Google Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483486.2.3.CO;2>CrossRefGoogle Scholar
Autin, W.J., 1992. Use of alloformations for definition of Holocene meander belts in the middle Amite River, southeastern Louisiana. Geological Society of America Bulletin 104, 233241.2.3.CO;2>CrossRefGoogle Scholar
Baker, V.R., 1973. Paleohydrology and sedimentology of Lake Missoula flooding in eastern Washington. Geological Society of America, Special Paper 144, 79 pp.Google Scholar
Benson, L.V., Lund, S.P., Smoot, J.P., Rhode, D.E., Spencer, R.J., Verosub, K.L., Louderback, L.A., Johnson, C.A., Rye, R.O., Negrini, R.M., 2011. The rise and fall of Lake Bonneville between 45 and 10.5 ka. Quaternary International 235, 5769.CrossRefGoogle Scholar
Beranek, L.P., Link, P.K., Fanning, C.M., 2006. Miocene to Holocene landscape evolution of the western Snake River Plain region, Idaho: using the SHRIMP detrital zircon provenance record to track eastward migration of the Yellowstone hotspot. Geological Society of America Bulletin 118, 10271050.CrossRefGoogle Scholar
Birkeland, P.W., 1999. Soils and Geomorphology, 3rd edition. Oxford University Press, New York, 430 p.Google Scholar
Birkeland, P.W., Machette, M.N., Haller, K.M., 1991. Soils as a tool for applied Quaternary geology. Utah Geological and Mineral Survey, Miscellaneous Publication 91-3, 63 pp.Google Scholar
Brennan, R., Quade, J., 1997. Reliable Late-Pleistocene stratigraphic ages and shorter groundwater travel times from 14C in fossil snails from the southern Great Basin. Quaternary Research 47, 329336.CrossRefGoogle Scholar
Bright, R.C., 1966. Pollen and seed stratigraphy of Swan Lake, southeastern Idaho: its relation to regional vegetation history and to Lake Bonneville history. Tebiwa 9, 147.Google Scholar
Cheng, H., Zhang, H., Spötl, C., Baker, J., Sinha, A., Li, H., Bartolomé, M. et al. , 2020. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proceedings of the National Academy of Sciences 117, 2340823417.CrossRefGoogle ScholarPubMed
Commendador, A.S., Finney, B.P., 2016. Holocene environmental change in the eastern Snake River Plain of Idaho, USA, as inferred from stable isotope analyses of small mammals. Quaternary Research 85, 358370.CrossRefGoogle Scholar
Cook, E.R., Seager, R., Heim, R.R. Jr., Vose, R.S., Herweijer, C., Woodhouse, C., 2010. Megadrought in North America: placing the IPCC projections of hydroclimate change in a long-term paleoclimate context. Journal of Quaternary Science 25, 4861.CrossRefGoogle Scholar
Covington, H.R., Weaver, J.N., 1990. Geologic map and profiles of the north wall of the Snake River canyon, Bliss, Hagerman, and Tuttle quadrangles, Idaho: U.S. Geological Survey Map I-1947-A, scale: 1:24,000.Google Scholar
Davis, O.K., Sheppard, J.C., Robertson, S., 1986. Contrasting climatic histories for the Snake River Plain, Idaho, resulting from multiple thermal maxima. Quaternary Research 26, 321339.CrossRefGoogle Scholar
Denlinger, R.P., George, D.L., Cannon, C.M., O'Connor, J.E., Waitt, R.B., 2021. Diverse cataclysmic floods from Pleistocene glacial Lake Missoula. In: Waitt, R.B., Thackray, G.D., Gillespie, A.R. (Eds.), Untangling the Quaternary Period—A Legacy of Stephen C. Porter. Geological Society of America Special Paper 548. https://doi.org/10.1130/2021.2548(17).Google Scholar
Einsele, G., 2000. Sedimentary Basins. Springer-Verlag, Berlin, 750 pp.CrossRefGoogle Scholar
Foster, D., Brocklehurst, S.H., Gawthorpe, R.L., 2010. Glacial-topographic interactions in the Teton Range, Wyoming. Journal of Geophysical Research 115, F01007. https://doi.org/10.1029/2008JF001135.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Galloway, W.E., 1989. Genetic stratigraphic sequences in basin analysis 1: architecture and genesis of flooding-surface bounded depositional units. AAPG Bulletin 73, 125142.Google Scholar
Gilbert, G.K., 1890. Lake Bonneville. U.S. Geological Survey Monograph 1, 438 pp.Google Scholar
Gillerman, V.S., 2001. Geologic report on the 1993 Bliss Landslide, Gooding County, Idaho. Idaho Geological Survey Staff Report 01-1, 14 pp.Google Scholar
Gilmour, D.M., Butler, V.L., O'Connor, J.E., Davis, E.B., Culleton, B.J., Kennett, D.J., Hodgins, G., 2015. Chronology and ecology of late Pleistocene megafauna in the northern Willamette Valley, Oregon. Quaternary Research 83, 127136.CrossRefGoogle Scholar
Godsey, H.S., Currey, D.R., Chan, M.A., 2005. New evidence for an extended occupation of the Provo shoreline and implications for regional climate change, Pleistocene Lake Bonneville, Utah, USA. Quaternary Research 63, 212223.CrossRefGoogle Scholar
Hudson, A.M., Hatchett, B.J., Quade, J., Boyle, D.P., Bassett, S.D., Ali, G., de los Santos, M.G., 2019. North-south dipole in winter hydroclimate in the western United States during the last deglaciation. Scientific Reports 9, 4826. https://doi.org/10.1038/s41598-019-41197-y.CrossRefGoogle ScholarPubMed
Janecke, S.U., Oaks, R.Q. Jr., 2011. New insights into the outlet conditions of Late Pleistocene Lake Bonneville, southeastern Idaho, USA. Geosphere 7, 13691391.CrossRefGoogle Scholar
Keene, J.L., 2016. Geochronology and geomorphology of the Pioneer Archaeological Site, Upper Snake River Plain, Idaho, USA. Geoarchaeology 31, 282303.CrossRefGoogle Scholar
Kimball, V.R., Baker, S.A., 2010. Bancroft Springs Cultural Resources Research Locale Management Plan. Idaho Power Company Cultural Resources Project Report 1026, Boise, Idaho.Google Scholar
Kjelstrom, L.C., 1995. Streamflow gains and losses in the Snake River and ground-water budgets for the Snake River Plain, Idaho and Eastern Oregon. U.S. Geological Survey Professional Paper 1408-C, 47 p.Google Scholar
Krause, T.R., Whitlock, C., 2013. Climate and vegetation change during the late-glacial/early-Holocene transition inferred from multiple proxy records from Blacktail Pond, Yellowstone National Park, USA. Quaternary Research 79, 391402.CrossRefGoogle Scholar
Laabs, B.J.C., Licciardi, J.M., Leonard, E.M., Munroe, J.S., Marchetti, D.W., 2020. Updated cosmogenic chronologies of Pleistocene mountain glaciation in the western United States and associated paleoclimate inferences. Quaternary Science Reviews 242, 106427. https://doi.org/10.1016/j.quascirev.2020.106427.CrossRefGoogle Scholar
Larsen, D.J., Crump, S.E., Blumm, A., 2020. Alpine glacier resilience and neoglacial fluctuations linked to Holocene snowfall trends in the western United States. Science Advances 6, eabc7661. https://doi.org/10.1126/sciadv.abc7661.CrossRefGoogle ScholarPubMed
Larsen, D.J., Finkenbinder, M.S., Abbott, M.B., and Ofstun, A.R., 2016. Deglaciation and postglacial environmental changes in the Teton Mountain Range recorded at Jenny Lake, Grand Teton National Park, WY. Quaternary Science Reviews 138, 6275.Google Scholar
Licciardi, J.M., Pierce, K.L., 2008. Cosmogenic exposure-age chronologies of Pinedale and Bull Lake glaciations in greater Yellowstone and the Teton Range, USA. Quaternary Science Reviews 27, 814831.CrossRefGoogle Scholar
Licciardi, J.M., Pierce, K.L., 2018. History and dynamics of the Greater Yellowstone Glacial System during the last two glaciations. Quaternary Science Reviews 200, 133.CrossRefGoogle Scholar
Lindholm, G.G., 1996. Summary of the Snake River plain regional aquifer-system analysis in Idaho and eastern Oregon. U.S. Geological Survey Professional Paper 1408-A. https://pubs.usgs.gov/pp/1408a/report.pdf.CrossRefGoogle Scholar
Liritzis, I., Singhvi, A.K., Feathers, J.K., Wagner, G.A., Kadereit, A., Zacharias, N., Li, S.-H., 2013. Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology: an Overview. Springer, New York. https://doi.org/10.1007/978-3-319-00170-8.CrossRefGoogle Scholar
Lohse, E.S., 2013. Archaeological testing of site 10EL217 at Bancroft Springs, Elmore County, Idaho. Idaho Power Company Cultural Resources Project Report 12–1.Google Scholar
Malde, H.E., 1960. Evidence in the Snake River Plain, Idaho, of a catastrophic flood from Pleistocene Lake Bonneville. US Geological Survey Professional Paper 400-B, B295–B297. https://doi.org/10.3133/pp400B.Google Scholar
Malde, H.E., 1968. The catastrophic Late Pleistocene Bonneville Flood in the Snake River Plain, Idaho: a study of colossal features of erosion and deposition produced along the Snake River by sudden overflow of Lake Bonneville. U.S. Geological Survey Professional Paper 596, 69 pp.Google Scholar
Malde, H.E., Powers, H.A., 1972. Geologic map of the Glenns Ferry-Hagerman area, west-central Snake River Plain, Idaho. U.S. Geological Survey Miscellaneous Geologic Investigations Map I-696, scale 1:48,000.Google Scholar
Marcott, S.A., Shakun, J.D., Clark, P.U., Mix, A.C., 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 11981201.CrossRefGoogle ScholarPubMed
Maupin, M.A., 1995. Water-quality assessment of the Upper Snake River basin, Idaho and western Wyoming—environmental setting, 1980–92. U.S. Geological Survey Water-Resources Investigations Report 94-4221, 35 pp.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., et al. , 2004. Holocene climate variability. Quaternary Research 62, 243255.CrossRefGoogle Scholar
McDonald, E., Bullard, T., 2001. Expert Opinion Report Concerning the age of Snake River Islands within the Deer Flat National Wildlife Refuge: Basis and Reasons for the Opinions Including Data and Information Considered in Forming the Opinions. U.S. Department of Justice, Denver, Colorado, 52 pp.Google Scholar
McLaughlin, P.P., 2005. Sequence stratigraphy. In: Selley, R.C., Robin, L., Cocks, M., Plimer, I.R. (Eds.), Encyclopedia of Geology. Elsevier, Amsterdam, pp. 159173.CrossRefGoogle Scholar
McWethy, D., Alt, M., Lee, C., 2018. Paleoenvironmental Study, Bancroft Springs, Idaho. Technical Report to Idaho Power Company, 20 pp.Google Scholar
Mensing, S.A., Sharpe, S.E., Tunno, I., Sada, D.W., Thomas, J.M., Starratt, S., Smith, J., 2013. The Late Holocene Dry Period: multiproxy evidence for an extended drought between 2800 and 1850 cal yr BP across the central Great Basin, USA. Quaternary Science Reviews 78, 266282.CrossRefGoogle Scholar
Miller, D.M., Oviatt, C.G., McGeehin, J.P., 2013. Stratigraphy and chronology of Provo shoreline deposits and lake-level implications, Late Pleistocene Lake Bonneville, eastern Great Basin, USA. Boreas 42, 342361.CrossRefGoogle Scholar
Miller, D.M., Wahl, D.B., McGeehin, J.P., Rosario, J., Oviatt, C.G., Anderson, L., Presnetsova, L., 2015. Limiting age for the Provo shoreline of Lake Bonneville. Quaternary International 387, 99105.CrossRefGoogle Scholar
Miller, S., Glanzman, D., Sherill, D., Parkinson, S., Buffington, J., Milligan, J., 2003. Geomorphology of the Hells Canyon Reach of the Snake River, Appendix E.1-2, Hells Canyon Complex. Idaho Power Company Technical Report FERC No. 1971, 182 pp.Google Scholar
Murray, A.S., Olley, J.M., Caitcheon, G.G., 1995. Measurement of equivalent doses in quartz from contemporary water-lain sediments using optically stimulated luminescence. Quaternary Science Reviews 14, 365371.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Neudorf, C.M., Roberts, R.G., Jacobs, Z., 2014. Assessing the time of final deposition of youngest Toba Tuff deposits in the Middle Son Valley, northern India. Palaeogeography, Palaeoclimatology, Palaeoecology 399, 127139.CrossRefGoogle Scholar
O'Connor, J.E., 1993. Hydrology, hydraulics, and geomorphology of the Bonneville Flood. Geological Society of America Special Paper 274, 83 pp.Google Scholar
O'Connor, J.E., 2016. Chapter 6—The Bonneville Flood—a veritable debacle. In: Oviatt, C.G., Shroder, J.F. (Eds.), Lake Bonneville: A Scientific Update. Developments in Earth Surface Processes 20, 105126.Google Scholar
O'Connor, J.E., Baker, V.R., Waitt, R.B., Smith, L.N., Cannon, C.M., George, D.L., Denlinger, R.P., 2020. The Missoula and Bonneville floods—a review of ice-age megafloods in the Columbia River basin. Earth Science Reviews 208, 103181. https://doi.org/10.1016/j.earscirev.2020.103181.CrossRefGoogle Scholar
Osterkamp, W.R., 1998. Processes of fluvial island formation, with examples from Plum Creek, Colorado and Snake River, Idaho. Wetlands 18, 530545.CrossRefGoogle Scholar
Osterkamp, W.R., Green, T.J., Reid, K.C., Cherkinsky, A.E., 2014. Estimation of the radiocarbon reservoir effect, Snake River Basin, northwestern North America. American Antiquity 79, 549560.CrossRefGoogle Scholar
Othberg, K.L., Gillerman, V.S., Kauffman, D., 2005. Geologic map of the Hagerman Quadrangle, Gooding and Twin Falls counties, Idaho. Idaho Geological Survey, Digital Web Map 50, scale 1:24,000.Google Scholar
Othberg, K.L., Kauffman, J.D., 2005. Geologic map of the Bliss Quadrangle, Gooding, and Twin Falls counties, Idaho. Idaho Geological Survey, Digital Web Map 53, scale 1:24,000.Google Scholar
Othberg, K.L., Kauffman, J.D., Gillerman, V.S., Garwood, D.L., 2012. Geologic Map of the Twin Falls 30 x 60 Minute Quadrangle, Idaho. Idaho Geological Survey, GM-49, Scale 1:100,000, 31 pp.Google Scholar
Oviatt, C.G., 2015. Chronology of Lake Bonneville, 30,000 to 10,000 yr B.P. Quaternary Science Reviews 110, 166171.CrossRefGoogle Scholar
Pierce, J.L., Meyer, G.A., Jull, A.J.T., 2004. Fire-induced erosion and millennial-scale climate change in the northern ponderosa pine forests. Nature 432, 8790.CrossRefGoogle ScholarPubMed
Pierce, J.L., Meyer, G.A., Rittenour, T., 2011. The relation of Holocene terraces to changes in climate and sediment supply, South Fork Payette River, Idaho. Quaternary Science Reviews 30, 628645.CrossRefGoogle Scholar
Pierce, K.L., Morgan, L.A., 1992. Chapter 1: The track of the Yellowstone hot spot: volcanism, faulting, and uplift. In: Link, P.K., Kuntz, M.A., Platt, L.B. (Eds.), Regional Geology of Eastern Idaho and Western Wyoming. Geological Society of America Memoir 179, 152.Google Scholar
Quirk, B., Moore, J., Laabs, B., Plummer, M., Caffee, M., 2020. Latest Pleistocene glacial and climate history of the Wasatch Range, Utah. Quaternary Science Reviews 238, 106313. https://doi.org/10.1016/j.quascirev.2020.106313.CrossRefGoogle Scholar
Raub, B.H., Racoviteanu, A., Khalsa, S.J.S., Helm, C., Armstrong, R., Arnaud, Y., 2007. The GLIMS geospatial glacier database: a new tool for studying glacier change. Global and Planetary Change 56, 101110.Google Scholar
Reimer, P., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk, R.C., Butzin, M., et al. , 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62. https://doi.org/10.1017/RDC.2020.41.CrossRefGoogle Scholar
Rhodes, E.J., 2011. Optically stimulated luminescence dating of sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences 39, 461488.CrossRefGoogle Scholar
Rittenour, T.M., 2008. Luminescence dating of fluvial deposits: applications to geomorphic, paleoseismic and archaeological research. Boreas 37, 613635.CrossRefGoogle Scholar
Shakun, J., Clark, P., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., Bard, E., 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 4954.CrossRefGoogle ScholarPubMed
Shuman, B., Henderson, A.K., Colman, S.M., Stone, J.R., Fritz, S.C., Stevens, L.R., Power, M.J., Whitlock, C., 2009. Holocene lake-level trends in the Rocky Mountains, USA. Quaternary Science Reviews 28, 18611879.CrossRefGoogle Scholar
Shuman, B.N., Marsicek, J., 2016. The structure of Holocene climate change in mid-latitude North America. Quaternary Science Reviews 141, 3851.CrossRefGoogle Scholar
Solomina, O.N., Bradley, R.S., Jomelli, V., Geirsdottir, A., Kaufman, D.S., Koch, J., McKay, N.P., et al. , 2016. Glacier fluctuations during the past 2000 years. Quaternary Science Reviews 149, 6190.CrossRefGoogle Scholar
Steponaitis, E., Andrews, A., McGee, D., Quade, J., Hseih, Y.T., Broecker, W.S., Shuman, B.N., Burns, S.J., Cheng, H., 2015. Mid-Holocene drying of the U.S. Great Basin recorded in Nevada speleothems. Quaternary Science Reviews 127, 174185.CrossRefGoogle Scholar
Stine, S., 1994. Extreme and persistent drought in California and Patagonia during Medieval time. Nature 369, 546549.CrossRefGoogle Scholar
Stone, J.R., Saros, J.E., Pederson, G.T., 2016. Coherent late-Holocene climate-driven shifts in the structure of three Rocky Mountain lakes. The Holocene 26, 11031111.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 1993. CALIB rev. 8. Radiocarbon 35, 215230. http://calib.org/calib/ (accessed 2022-3-30).CrossRefGoogle Scholar
U.S. Geological Survey, Idaho Geological Survey, 2018. Quaternary fault and fold database for the United States. https://www.usgs.gov/natural-hazards/earthquake-hazards/faults (accessed May 1, 2018).Google Scholar
Waters, M.R., Haynes, C.V., 2001. Late Quaternary Arroyo Formation and climate change in the American southwest. Geology 29, 399402.2.0.CO;2>CrossRefGoogle Scholar
Weeden, H.A., Bolling, N.B., 1980. Fundamentals of aerial photography interpretation. (Eds.), Siegal, B.A., Gillespie, A.R. (Eds.), Remote Sensing in Geology. John Wiley & Sons, New York, pp. 229256.Google Scholar
Whitlock, C., 1993. Postglacial vegetation and climate of Grand Teton and Southern Yellowstone National Parks. Ecological Monographs 63, 173198.CrossRefGoogle Scholar
Whitlock, C., Briles, C.E., Fernandez, M.C., Gage, J., 2011. Holocene vegetation, fire and climate history of the Sawtooth Range, central Idaho, USA. Quaternary Research 75, 114124.CrossRefGoogle Scholar
Whitlock, C., Dean, W.E., Fritz, S.C., Stevens, L.R., Stone, J.R., Power, M.J., Rosenbaum, J.R., Pierce, K.L., Bracht-Flyr, B.B., 2012. Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 331–332, 90103.CrossRefGoogle Scholar
Supplementary material: PDF

Bacon et al. supplementary material

Bacon et al. supplementary material 1

Download Bacon et al. supplementary material(PDF)
PDF 776.9 KB
Supplementary material: File

Bacon et al. supplementary material

Bacon et al. supplementary material 2

Download Bacon et al. supplementary material(File)
File 45.3 KB
Supplementary material: File

Bacon et al. supplementary material

Bacon et al. supplementary material 3

Download Bacon et al. supplementary material(File)
File 40.6 KB