Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:32:05.098Z Has data issue: false hasContentIssue false

Last glacial fire regime variability in western France inferred from microcharcoal preserved in core MD04-2845, Bay of Biscay

Published online by Cambridge University Press:  20 January 2017

Anne-Laure Daniau*
Affiliation:
Université de Bordeaux1, EPHE, CNRS UMR5805, EPOC, bât B18, Avenue des Facultés, 33405 TALENCE Cedex, France Université de Bordeaux1, CNRS UMR5199 PACEA, Institut de Préhistoire et Géologie du Quaternaire, bât B18, Avenue des Facultés, 33405 TALENCE Cedex, France
Maria Fernanda Sánchez Goñi
Affiliation:
Université de Bordeaux1, EPHE, CNRS UMR5805, EPOC, bât B18, Avenue des Facultés, 33405 TALENCE Cedex, France
Josette Duprat
Affiliation:
Université de Bordeaux1, EPHE, CNRS UMR5805, EPOC, bât B18, Avenue des Facultés, 33405 TALENCE Cedex, France
*
*Corresponding author. Université de Bordeaux1, CNRS UMR5199 PACEA, Institut de Préhistoire et Géologie du Quaternaire, bât B18, Avenue des Facultés, 33405 TALENCE Cedex, France. Fax: +33 5 40 00 84 51. Email Address:al.daniau@ipgq.u-bordeaux1.fr, mf.sanchezgoni@epoc.u-bordeaux1.fr, jm.duprat@orange.fr

Abstract

High resolution multiproxy analysis (microcharcoal, pollen, organic carbon, Neogloboquadrina pachyderma (s), ice rafted debris) of the deep-sea record MD04-2845 (Bay of Biscay) provides new insights for understanding mechanisms of fire regime variability of the last glacial period in western France. Fire regime of western France closely follows Dansgaard–Oeschger climatic variability and presents the same pattern than that of southwestern Iberia, namely low fire regime associated with open vegetation during stadials including Heinrich events, and high fire regime associated with open forest during interstadials. This supports a regional climatic control on fire regime for western Europe through fuel availability for the last glacial period. Additionally, each of Heinrich events 6, 5 and 4 is characterised by three episodes of fire regime, with a high regime bracketed by lower fire regime episodes, related to vegetational succession and complex environmental condition changes.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G.P., and Castaing, P. Carte de répartition des sédiments superficiels sur le plateau continental du Golfe de Gascogne. Bull. Inst. Géol. Bassin d'Aquitaine 21, (1977). 255261.Google Scholar
Andreae, M.O., and Merlet, P. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, (2001). 955966.Google Scholar
Bard, E., Rostek, F., and Ménot-Combes, G. Radiocarbon calibration beyond 20,000 14C B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61, (2004). 204214.CrossRefGoogle Scholar
Batten, D.J. Palynofacies and palaeoenvironmental interpretation. Jansonius, J., McGregor, D.C. Palynology: Principles and Applications 3, (1996). American Association of Stratigraphic Palynologists Foundation, 10111064.Google Scholar
Beaufort, L., and Heussner, S. Coccolithophorids on the continental slope of the Bay of Biscay — production, transport and contribution to mass fluxes. Deep-Sea Research II 46, (1999). 21472174.Google Scholar
Bergeron, Y., Gauthier, S., Flannigan, M., and Kafka, V. Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec. Ecology 85, (2004). 19161932.CrossRefGoogle Scholar
Bertran, P., Allenet, G., , T., Naughton, F., Poirier, P., and Sanchez Goni, M.F. Coversand and Pleistocene palaeosols in the Landes region, southwestern France. Journal of Quaternary Science (2008). http://dx.doi.org/10.1002/jqs.1220 Google Scholar
Blyakharchuk, T.A., and Sulerzhitsky, L.D. Holocene vegetational and climatic changes in the forest zone of Western Siberia according to pollen records from the extrazonal palsa bog Bugristoye. The Holocene 9, 5 (1999). 621628.Google Scholar
Boulter, M.C. An approach to a standard terminology for palynodebris. Traverse, A. Sedimentation of Organic Particles. (1994). Cambridge University Press, Cambridge. 199216.Google Scholar
Bradshaw, R.H.W., Tolonen, K., and Tolonen, M. Holocene records of fire from the boreal and temperate zones of Europe. Clark, J.S., Cachier, H., Goldammer, H., and Stocks, B. Sediment Records of Biomass Burning and Global Change. (1997). Springer-Verlag, Berlin. 347365.Google Scholar
Calvo, L., Tarrega, R., and Luis, E. Regeneration patterns in a Calluna vulgaris heathland in the Cantabrian mountains (NW Spain): effect of burning, cutting and ploughing. Acta Oecologia 23, (2002). 8190.Google Scholar
Camill, P. How much do local factors matter for predicting transient ecosytem dynamics? Suggestions from permafrost formation in boreal peatlands. Global Change Biology 6, (2000). 169182.Google Scholar
Castaing, P., (1981). Le transfert à l'océan des suspensions estuariennes. Cas de la Gironde. Doct. es Sciences thesis, Université Bordeaux1, .Google Scholar
Colas, F., (2003). Circulation et dispersion lagrangiennes en Atlantique Nord-Est. Thesis, Université de Bretagne Occidentale, .Google Scholar
Combourieu Nebout, N., Turon, J.L., Zahn, R., Capotondi, L., Londeix, L., and Pahnke, K. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 ky. Geological Society of America 30, (2002). 863866.Google Scholar
Crutzen, P.J., Heidt, L.E., Krasnec, J.P., Pollock, W.H., and Seiler, W. Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS. Nature 282, (1979). 253256.Google Scholar
Daniau, A.L., Sánchez Goñi, M.F., Beaufort, L., Laggoun-Défarge, F., Loutre, M.F., and Duprat, J. Dansgaard–Oeschger climatic variability revealed by fire emissions in southwestern Iberia. Quaternary Science Reviews 26, (2007). 13691383.Google Scholar
Dupuis, H., Michel, D., and Sottolichio, A. Wave climate evolution in the Bay of Biscay over two decades. Journal of Marine Systems 63, (2006). 105114.Google Scholar
Durrieu de Madron, X., Castaing, P., Nyffeler, F., and Courp, T. Slope transport of suspended particulate matter on the Aquitanian margin of the Bay of Biscay. Deep-Sea Research II 46, (1999). 20032027.CrossRefGoogle Scholar
Enache, M.D., and Cumming, B.F. Tracking recorded fires using charcoal morphology from the sedimentary sequence of Prosser Lake, British Columbia (Canada). Quaternary Research 65, (2006). 282292.Google Scholar
European Commission, (2001). Forest Fires In Southern Europe. Environment and Geo-Information Unit report 1 (July).Google Scholar
Etcheber, H., Relexans, J.C., Beliard, M., Weber, O., Buscail, R., and Heussner, S. Distribution and quality of sedimentary organic matter on the Aquitanian margin (Bay of Biscay). Deep-Sea Research II 46, (1999). 22492288.Google Scholar
Flückiger, J., Blunier, T., Stauffer, B., Chappellaz, J., Spahni, R., Kawamura, K., Schwander, J., Stocker, T.F., and Dahl-Jensen, D. N2O and CH4 variations during the last glacial epoch: insight into global processes. Global Biogeochemical Cycles (2004). 18 Google Scholar
Froidefond, J.M., Castaing, P., and Jouanneau, J.M. Distribution of suspended matter in a coastal upwelling area. Satellite data and in situ measurements. Journal of Marine Systems 8, (1996). 91105.CrossRefGoogle Scholar
Garcia-Soto, C., Pingree, R.D., and Valdes, L. Navidad development in the southern Bay of Biscay: climate change and swoddy structure from remote sensing and in situ measurements. Journal of Geophysical Research 107, C8 (2002). 3118 Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S. Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Letters to Nature (2003). 421 Google ScholarPubMed
Greisman, A. Fire, forest and cultural landscape history during the last 11 000 years in Småland — a case study at Stavsåkra. ESS Bulletin (2006). 4 Google Scholar
Heaps, N.S. A mechanism for local upwelling along the European continental slope. Oceanologica Acta 3, (1980). 449454.Google Scholar
Hu, F.S., Brubaker, L.B., Gavin, D.G., Higuera, P.E., Lynch, J.A., Rupp, T.S., and Tinner, W. How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation and Adaptation Strategies for Global Change 11, (2006). 829846C. http://dx.doi.org/10.1007/s11027-005-9015-4 CrossRefGoogle Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, F.G., Manning, S., BronkRamsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10591086.Google Scholar
Jouanneau, J.M., Weber, O., Cremer, M., and Castaing, P. Fine-grained sediment budget on the continental margin of the Bay of Biscay. Deep-Sea Research II 46, (1999). 22052220.CrossRefGoogle Scholar
Kennett, J.P. Marine Geology. (1982). Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
Koutsikopoulos, C., and le Cann, B. Physical processes and hydrological structures related to the Bay of Biscay anchovy. Scientia Marina 60, 2 (1996). 919.Google Scholar
Laitinen, J., Rehell, S., and Oksanen, J. Community and species responses to water level fluctuations with reference to soil layers in different habitats of mid-boreal mire complexes. Plant Ecology (2007). http://dx.doi.org/10.1007/s11258-007-9271-3 Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and Levrard, B. A long term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, (2004). 261285.Google Scholar
Lazure, P., and Jégou, A.M. 3D modelling of seasonal evolution of Loire and Gironde plumes on Biscay Bay continental shelf. Oceanologica Acta 21, (1998). 165177.Google Scholar
Lericolais, G., Berné, S., and Féniès, H. Seaward pinching out and internal stratigraphy of the Gironde incised valley on the shelf (Bay of Biscay). Marine Geology 175, (2001). 183197.CrossRefGoogle Scholar
Linderholm, H.W., and Leine, M. An Assessment of twentieth century tree-cover changes on a southern Swedish peatland combining dendrochronology and aerial photograph analysis. Wetlands 24, (2004). 357363.CrossRefGoogle Scholar
Lobert, J.M., Scharffe, D.H., Hao, W.M., and Crutzen, P.J. Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases. Nature 346, (1990). 552554.Google Scholar
Magri, D. Late-Quaternary changes of plant biomass as recorded by pollen-stratigraphical data: a discussion of the problem at Valle di Castiglione, Italy. Review of Palaeobotany and Palynology 81, (1994). 313325.Google Scholar
McNamara, J.P., Siegel, D.I., Glaser, P.H., and Beck, R.M. Hydrogeologic controls on peatland development in the Malloryville Wetland, New York (USA). Journal of Hydrology 140, (1992). 279296.CrossRefGoogle Scholar
Moreno, A., Cacho, I., Canals, M., Prins, M., Sánchez Goñi, M.F., Grimalt, J.O., and Weltje, G.J. Saharan dust transport and high-latitude glacial climate variability: the Alboran sea record. Quaternary Research 58, (2002). 318328.Google Scholar
Mouillot, F., Rambal, S., and Joffre, R. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology 8, (2002). 423437.CrossRefGoogle Scholar
Myers, P.G., Haines, K., and Rohling, E.J. Modeling the paleocirculation of the Mediterranean: the last glacial maximum and the Holocene with emphasis on the formation of sapropel S1. Paleoceanography 13, (1998). 586606.Google Scholar
Naughton, F., Sánchez Goñi, M.F., Desprat, S., Turon, J.-L., Duprat, J., Malaizé, B., Joli, C., Cortijo, E., Drago, T., and Freitas, M.C. Present-day and past (last 25000 years) marine pollen signal off western Iberia. Marine Micropaleontology 62, (2007). 91114.Google Scholar
Ni, J., Harrison, S.P., Prentice, I.C., Kutzbach, J.E., and Sitch, S. Impact of climate variability on present and Holocene vegetation: a model-based study. Ecological Modelling 191, (2006). 469486.Google Scholar
Noël, H., (2001). Caractérisation et calibration des flux organiques sédimentaires dérivant du bassin versant et de la production aquatique (Annecy, le Petit lac). Rôles respectifs de l'Homme et du climat sur l'évolution des flux organiques au cours des 6000 dernières années. Ph. D. Thesis, Sciences de l'Univers, Pétrographie et Géochimie Organiques, Université d'Orléans, Orléans, France.Google Scholar
Ozenda, P. Les Végétaux Dans La Biosphère. (1982). Paris, Doin. 431 Google Scholar
Pailler, D., and Bard, E. High frequency palaeoceanographic changes during the past 140,000 yr recorded by the organic matter in sediments of the Iberian margin. Palaeogeography, Palaeoclimatology, Palaeoecology 181, (2002). 431452.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, (1999). 429436.Google Scholar
Polunin, O., and Walters, M. A Guide to the Vegetation of Britain and Europe. (1985). Oxford University Press, New York.Google Scholar
Power, M.J., Marlon, J., Ortiz, N., Bartlein, P.J., Harrison, S.P., Mayle, F.E., Ballouche, A., Bradshaw, R.H.W., Carcaillet, C., Cordova, C., Mooney, S., Moreno, P.I., Prentice, I.C., Thonicke, K., Tinner, W., Whitlock, C., Zhang, Y., Zhao, Y., Ali, A.A., Anderson, R.S., Beer, R., Behling, H., Briles, C., Brown, K.J., Brunelle, A., Bush, M., Camill, P., Chu, G.Q., Clark, J., Colombaroli, D., Connor, S., Daniau, A.-L., Daniels, M., Dodson, J., Doughty, E., Edwards, M.E., Finsinger, W., Foster, D., Frechette, J., Gaillard, M.J., Gavin, D.G., Gobet, E., Haberle, S., Hallett, D.J., Higuera, P., Hope, G., Horn, S., Inoue, J., Kaltenreider, P., Kennedy, L., Kong, Z.C., Larsen, C., Long, C.J., Lynch, J., Lynch, E.A., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T., Mohr, J., Nelson, D.M., New, J., Newnham, R., Noti, R., Oswald, W., Pierce, J., Richard, P.J.H., Rowe, C., Sánchez Goñi, M.F., Shuman, B.J., Takahara, H., Toney, J., Turney, C., Urrego-Sanchez, D.H., Umbanhowar, C., Vandergoes, M., Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J., and Zhang, J.H. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics (2007). http://dx.doi.org/10.1007/s00382-007-0334-x Google Scholar
Puillat, I., Lazure, P., Jégou, A.M., Lampert, L., and Miller, P.I. Hydrographical variability on the French continental shelf in the Bay of Biscay, during the 1990s. Continental Shelf Research 24, (2004). 11431163.CrossRefGoogle Scholar
Rixen, M., Beckers, J.-M., Levitus, S., Antonov, J., Boyer, T., Maillard, C., Fichaut, M., Balopoulos, E., Iona, S., Dooley, H., Garcia, M.J., Manca, B., A., G., Manzella, G., Mikhailov, N., Pinardi, N., Zavatarelli, M. the Medar Consortium The Western Mediterranean Deep Water: a proxy for climate change. Geophysical Research Letters 32, (2005). NIL_47-NIL_50 Google Scholar
Rochefort, L., Campeau, S., and Bugnon, J.-L. Does prolonged flooding prevent or enhance regeneration and growth of Sphagnum?. Aquatic Botany 74, (2002). 327341.Google Scholar
Ruch, P., Mirmand, M., Jouanneau, J.-M., and Latouche, C. Sediment budget and transfer of suspended sediment from the Gironde estuary to Cap Ferret Canyon. Marine Geology 111, (1993). 109119.Google Scholar
Sánchez Goñi, M.F., Cacho, I., Turon, J.-L., Guiot, J., Sierro, F.J., Peypouquet, J.P., Grimalt, J.O., and Shackleton, N.J. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics 19, (2002). 95105.Google Scholar
Sánchez Goñi, M.F., Landais, A., Fletcher, W., Naughton, F., Desprat, S., and Duprat, J. Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, (2008). 11361151.Google Scholar
Serryn, P. Atlas Bordas Géographique. (1994). Hölzel, Paris.Google Scholar
Shackleton, N.J. et al. MD95-2042 Oxygen and Carbon Isotope Data. IGBP PAGES/World Data Center A for Paleoclimatology Data Contribution Series #2000-066. NOAA/NGDC Paleoclimatology Program. (2000). Boulder CO, USA.Google Scholar
Shackleton, N.J., Fairbanks, R.G., Chiu, T.-C., and Parrenin, F. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C. Quaternary Science Reviews 23, (2004). 15131522.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., (2005). CALIB 5.0.. (www program and documentation).Google Scholar
Théry-Parisot, I., (1998). Economie du combustible et Paléoécologie en contexte glaciaire et périglaciaire, Paléolithique moyen et supérieur du sud de la France. Anthracologie, Experimentation, Taphonomie. Thesis, Université de Paris I Panthéon-Sorbonne.Google Scholar
Thonicke, K., Prentice, C.I., and Hewitt, C. Modeling glacial–interglacial changes in global fire regimes and trace gas emissions. Global Biogeochemical Cycles 19, (2005). GB3008 http://dx.doi.org/10.1029/2004GB002278 Google Scholar
Toucanne, S., Mulder, T., Schönfeld, J., Hanquiez, V., Gonthier, E., Duprat, J., Cremer, M., and Zaragosi, S. Contourites of the Gulf of Cadiz: a high-resolution record of the paleocirculation of the Mediterranean outflow water during the last 50,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 246, (2007). 354366.CrossRefGoogle Scholar
Trigo, R.M., Osborn, T.J., and Corte-Real, J.M. The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Climate Research 20, (2002). 917.Google Scholar
Turon, J.-L., (1984). Le palynoplancton dans l'environnement actuel de l'Atlantique nord-oriental. Evolution climatique et hydrologique depuis le dernier maximum glaciaire. Mémoires de l'Institut de Géologie du bassin d'Aquitaine (17) Université de Bordeaux I, Bordeaux.Google Scholar
van Aardenne, J.A., Dentener, F.J., Oliver, J.G.J., Klein Goldewijk, C.G.M., and Lelieveld, J. A 1 X 1 resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Global Biogeochemical Cycles 15, (2001). 909928.CrossRefGoogle Scholar
Van der Werf, G.R., Randerson, J.T., Collatz, G.J., Giglio, L., Kasibhatla, S., Arellano, J.A.F., Olsen, S.C., and Kasischke, E.S. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina Period. Science 303, (2004). 7376.CrossRefGoogle ScholarPubMed
Van Huissteden, J., Gibbard, P.L., and Briant, R.M. Periglacial fluvial systems in northwest Europe during oxygen isotope stages 4 and 3. Quaternary International 79, (2001). 7588.Google Scholar
Voelker, A.H.L., Lebreiro, S.M., Schönfeld, J., Cacho, I., Erlenkeuser, H., and Abrantes, F. Mediterranean outflow strengthening during northern hemisphere coolings: a salt source for the glacial Atlantic?. Earth and Planetary Science Letters 245, (2006). 3955.Google Scholar