Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T20:39:40.815Z Has data issue: false hasContentIssue false

Late Quaternary Environmental and Climatic Changes in Central Brazil

Published online by Cambridge University Press:  20 January 2017

Abstract

Paleoenvironmental changes dating back to 30,000 yr B.P. documented in a pollen record from central Brazil (lat. 19°S) permit the reconstruction of climatic changes related to shifts of the Antarctic polar fronts. The paleoclimatic inferences were obtained by a study of modern vegetation and pollen distribution, taking into account present-day climatic parameters. At 30,000 yr B.P. the climate must have been warmer and moister than today judging from the high amount of tree pollen taxa characteristic of floodplain forest. From 17,000 to 14,000 yr B.P. the climate was drier although tree pollen percentages were relatively high. After 12,000 yr B.P. Araucaria forest elements increased, suggesting a moister and cooler climate. The Araucaria forest disappeared during a short interval between 11,000 and 10,000 yr B.P. This could be related to the Younger Dryas event. At the beginning of the Holocene the climate became cool and moist again, as indicated by the reexpansion of the Araucaria forest. The latter was progressively replaced by a mesophytic semideciduous forest indicating warmer and drier climate after 8500 yr B.P. At 5000 yr B.P. an arid interval was followed by the expansion of mesophytic semideciduous forest elements.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab’Saber, A. N. (1982). The paleoclimate and paleoecology of brazilian Amazonia. In “Biological Diversification in the Tropics” (Prance, G. T., Ed.), pp. 4159. Columbia Univ. Press, New York.Google Scholar
Absy, M. L. (1980). Dados sobre as mudanças do clima e da vegetaçāo da Amazonia durante o Quatemário. Acta Amazon’tca 10(4), 929930.Google Scholar
Absy, M. L. Cleef, A. Fouvnier, M. Martin, L. Servant, M. Siffe-dine, A. Silva, M. F. F. Soubiès, F. Suguio, K. Turcq, B., and Van der Hammen, T. (1991), Mise en évidence de quatre phases d’ouver-ture de la forêt dense dans le sud-est de l’Amazonie au cours des 60000 dernières années. Premiere comparison avec d’autres régions tropicales. Comptes Rendus de l’Academie des Sciences, Serie 2 t . 312, 673678.Google Scholar
Aubreville, A. (1961). “Etude écologique des principales formations végétales du Brésil et contribution à la connaissance des forêts de l’Amazonie brésilienne.” Centre Technique Forestier Tropical, Nogent.Google Scholar
Bigarella, J. J., and Andrade-Lima, de D. (1982). Paleoenvironmental changes in Brazil. In “Biological Diversification in the Tropics” (Prance, G. T., Ed.), pp. 2740. Columbia Univ. Press, New York.Google Scholar
Bradbury, J. P. Leyden, B. Salgado-Labouriau, M. L. Lewis, W. M. Jr Schubert, C Benford, M. W. Frey, D. G. Whitehead, D. R., and Weibezahn, F. H. (1981). Late Quaternary environmental history of Lake Valencia, Venezuela. Science 214, 12991305.Google Scholar
Bush, M. B., and Colinvaux, P. A. (1990). A pollen record of a complete glacial cycle from lowland Panama. Journal of Vegetation Science 1, 105118.Google Scholar
Bush, M. B. Colinvaux, P. A. Wiemann, M. C Piperno, D. R., and Liu, K. B. (1990). Late Pleistocene temperature depression and veg-etation change in Ecuadorian Amazonia. Quaternary Research 34, 330345.Google Scholar
Faegri, K., and Iversen, J. (1975). “Textbook of Pollen Analysis.” Munksgaard, Copenhagen.Google Scholar
Ferri, M. G. (1980). “Vegetação brasileira.” USP e Itatiaia, Sao Paulo.Google Scholar
Gentry, A. H. (1982). Phytogeographic patterns as evidence for a Chocó refuge. In “Biological Diversification in the Tropics” (Prance, G. T., Ed.), pp. 112135. Columbia Univ. Press, New York.Google Scholar
Haffer, J. (1969). Speciation in Amazonian forest birds. Science 165, 131137.Google Scholar
Hueck, K., and Seibert, P. (1981). “Vegetationskarte von Su-damerika.” G. Fischer, Stuttgart.Google Scholar
Klein, R. M. (1975). Southern Brazilian phytogeographic features and the probable influence of upper Quaternary climatic changes in the floristic distribution. Boletim Paranaense de Geosciencias 33, 6788.Google Scholar
Ledru, M. P. (1991). “Etude de la pluie pollinique actuelle des forêts du Brésil Central: climat, végétation, application à l’étude de l’évolution paléoclimatique des 30000 dernières années”. Unpublished Ph.D dissertation, Museum National d’Histoire Naturelle, Paris.Google Scholar
Leyden, B. W. (1985). Late Quaternary aridity and Holocene moisture fluctuations in the Lake Valencia Basin, Venezuela. Ecology 66(4), 12791295.Google Scholar
Liu, K. B., and Colinvaux, P. (1985). Forest changes in the Amazon basin during the last glacial maximum. Nature 138, 556557.Google Scholar
Loefgren, A., and Edwall, G. (18971905). Flora Paulista. Bol. Comm, Geogr. Sāo Paulo 14, 1215.Google Scholar
Lorscheitter, M. L., and Romero, E. J. (1985). Palynology of Quaternary sediments of the core T15 Rio Grande Cone, South Atlantic, Brazil. In “Quaternary of South America and Antarctica Peninsula” (Rabassa, J., Ed.), Vol. 3, pp. 5592. Balkema, Rotterdam.Google Scholar
Lund, P. W. (1835). Bemaerkninger over VegetaMonen paa de indre Hogsletter af Brasilien, isaer i plantehistorike henseende. Kgl. Danske Videnskab. Selsk. Skrifer VI, 14588.Google Scholar
Markgraf, V. (1989). Paleoclimates in Central and South America since 18000 BP based on pollen and lake-level records. Quaternary Science Reviews 8, p. 124.CrossRefGoogle Scholar
Markgraf, V. (1991). Younger Dryas in southern South America? Boreas 20, 6370.CrossRefGoogle Scholar
Markgraf, V., and Bradbury, J. P. (1982). Holocene climatic history of South America. In “Chronostratigraphic Subdivision of the Holocene” (Mangerud, J. Birks, H. J. B., and Jäger, K. D., Eds.), Striae 16, 4045, Uppsala.Google Scholar
Nobre, C. A., and Oliveira, de A. S. (1986). Precipitation and circulation anomalies in South America and the 1982-83 El Nin̄o/Southern Oscillation episod. In “Extended Abstracts of the Second International Conference on Southern Hemisphere Meteorology,” pp. 442445. Wellington, New Zealand.Google Scholar
Pagney, P. (1976). “Les climats de la Terre.” Masson, Paris.Google Scholar
Prance, G. T. (1973). Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon basin, based on evidence from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichap-etalaceae and Lecythidaceae. Acta Amazonica 3(3), 528.CrossRefGoogle Scholar
Räsänen, M. E. Salo, J. S., and Kalliola, R. J. (1987). Fluvial pertur-bance in the western Amazon basin: regulation by long term sub-Andean tectonics. Science 238, 13981400.CrossRefGoogle ScholarPubMed
Rizzini, C. T. (1979). “Tratado de fitogeografia do Brasil. Aspectos sociológicos e floristicos.” HUCITEC e USP, Sāo Paulo.Google Scholar
Salgado-Labouriau, M. L. (1973). “Contribuçāo á palinologia dos cer-rados.” Ac. Bras. de Ciências, Rio de Janeiro.Google Scholar
Salo, J. S. Kalliola, R. J. Häkkinen, i. Mäkinen, Y. Niemelä, P. Pumakka, M., and Coley, P. (1986). River dynamics and the diversity of Amazon lowland forest. Nature 322, 254258.Google Scholar
Schnell, R. (1987). “La flore et la végétation de l’Amérique Tropicale.” Masson, Paris.Google Scholar
Servant, M. Fournider, M. Soubiès, F. Suguio, K., and Turcq, B. (1989). Sécheresse holocène au Brésil (18-20° latitude Sud). Impli-cations paléométéorologiques. Comptes Rendus de l’Academie des Sciences, Serie 2 t.309, 153156.Google Scholar
Silva, da A. F., and Shepherd, G. J. (1986). Comparaçōes florísticas entre algumas matas brasileiras utilizando análise de agrupamento. Rvta Brasil. Bot. 9, 8186.Google Scholar
Souza Reis, A. C. de (1971). Climatologia dos cerrados. In “III Sim-pósio sôbre o cerrado” (Ferri, M. G., Ed.), pp. 1526. Bücher Ltd. e USP, Sāo Paulo.Google Scholar
Van der Hammen, T. (1974). The Pleistocene changes of the vegetation and climate in tropical South America. Journal of Bio. 1, 326.Google Scholar
Van der Hammen, T. (1983). The palaeoecology and palaeogeography of savannas. In “Tropical savannas” (Bourliere, F., Ed.), pp. 1935, Elsevier, Amsterdam.Google Scholar
Van der Hammen, T., and Gonzalez, A. E. (1960). Holocene and late glacial climate and vegetation of Páramo de Palacio (Eastern Cordillera, Colombia, South America). Geotogie en Mijnbow 39(12), 737746.Google Scholar
Van der Hammen, T., and Gonzalez, A. E. (1965). A pollen diagram from “Lagunade la Herrera” (Sabana de Bogotá).. Leidse Geol. Med. 32, 183191.Google Scholar
Vaughan-Williams, P. (1988). “Brasil. A Concise Thematic Geogra-phy.” Unwin Hyman, London.Google Scholar
Virji, H., and Kousky, V. E. (1983). Regional and global aspects of a low latitude frontal penetration in Amazonas and associated tropical activity. In “Preprints of the 1st international Conference on Southern Hemisphere Meteorology”, pp. 215220. Sāo José dos Campos, Brazil.Google Scholar
Wijmstra, T. A., and Van der Hammen, T. (1966). Palynological data on the history of tropical savannas in northern South America. Leidse Geol. Med. 38, 7190.Google Scholar