Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T07:54:59.917Z Has data issue: false hasContentIssue false

Late Quaternary paleosols, stratigraphy and landscape evolution in the Northern Pampa, Argentina

Published online by Cambridge University Press:  20 January 2017

Rob A. Kemp*
Affiliation:
Department of Geography, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
Marcelo Zárate
Affiliation:
CONICET and Universidad Nacional de la Pampa, Santa Rosa, Argentina
Phillip Toms
Affiliation:
School of Environment, University of Gloucestershire, Cheltenham, Gloucestershire GL50 4AZ, UK
Matthew King
Affiliation:
Department of Geography, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
Jorge Sanabria
Affiliation:
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba, Argentina
Graciella Arguello
Affiliation:
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba, Argentina
*
Corresponding author. E-mail address:r.kemp@rhul.ac.uk (R.A. Kemp).

Abstract

The field properties, micromorphology, grain-size, geochemistry, and optically stimulated luminescence (OSL) ages of two late Quaternary sections have been used to reconstruct the sequence of pedosedimentary processes and to provide insights into landscape evolution in part of the Northern Pampa of Argentina. Paleosols developed in paludal sediments adjacent to the Paraná river at Baradero and in loess at Lozada can both be correlated and linked to other sites, thus enabling for the first time the tentative recognition and tracing of a diachronous soil stratigraphic unit that probably spans the equivalent of at least part of marine oxygen isotope stage (OIS) 5. The paleosol at Lozada was truncated and buried beneath fluvial sediments during the time span of OIS 4 and 3. Eolian gradually replaced paludal inputs at Baradero over this period, and there were also two clearly defined breaks in sedimentation and development of paleosols. The period corresponding to OIS 2 was marked by significant loess accumulation at both sites with accretion continuing into the mid-Holocene only at Lozada. The more developed nature of the surface soil at Baradero probably reflects a combination of a moister climate and a longer soil-forming interval.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiec, G., and Aitken, M.J. Dose-rate conversion factors: new data. Ancient TL 16, (1998). 3750.Google Scholar
Antoine, P., Rousseau, D.D., Zöller, L., Lang, A., Munaut, A.V., Hatté, C., and Fontugne, M. High-resolution record of the last Interglacial-glacial cycle in the Nussloch loess–palaeosol sequences, Upper Rhine Area, Germany. Quaternary International 76/77, (2001). 211229.CrossRefGoogle Scholar
Bateman, M.D., Frederick, C.D., Jaiswal, M.K., and Singhvi, A.K. Investigations into the potential effects of pedoturbation on luminescence dating. Quaternary Science Reviews 22, (2003). 11691176.Google Scholar
Berger, G.W. Luminescence chronology of late Pleistocene loess–paleosol and tephra sequences near Fairbanks, Alaska. Quaternary Research 60, (2003). 7083.CrossRefGoogle Scholar
Berger, G.W., Mulhern, P.J., and Huntley, D.J. Isolation of silt-sized quartz from sediments. Ancient TL 11, (1980). 147152.Google Scholar
Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., and Tursina, T. Handbook for Soil Thin Section Description. (1985). Waine Research, Wolverhampton.Google Scholar
Camilión, M., Mormeneo, L., Iñiguez, A., and Maggi, J. Clay minerals and particle size distribution in the loessic sediments of the north-east Pampa Plain, Argentina. Derbyshire, E. Loess and the Argentine Pampa. Leicester University Geography Department Occasional Paper (1992). 2429.Google Scholar
Cantú, M. El Holoceno de la Provincia de Córdoba. Iriondo, M. Primer Simposio Internacional del Holoceno. (1992). Entre Ríos, Paraná. 116.Google Scholar
Carignano, C.A. Late Pleistocene to recent climate change in Córdoba Province Argentina: geomorphological evidence. Quaternary International 57/58, (1999). 117134.CrossRefGoogle Scholar
D'Antoni, H. Pollen analysis of Gratua del Indio. Quaternary of South America and Antarctic Peninsula 1, (1983). 83104.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., and Olley, J.M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter (northern Australia): Part I. Experimental design and statistical models. Archaeometry 41, (1999). 339364.Google Scholar
Gale, S.J., and Hoare, P.G. Quaternary Sediments: Petrographic Methods for the Study of Unlithified Rocks. (1992). Belhaven Press, London.Google Scholar
Goble, R.J., Mason, J.A., Loope, D.B., and Swinehart, J.B. Optical and radiocarbon ages of stacked paleosols and dune sands in the Nebraska Sand Hills, USA. Quaternary Science Reviews 23, (2004). 11731182.Google Scholar
Grimley, D.A., Follmer, L.R., Hughes, R.E., and Solheid, P.A. Modern, Sangamon and Yarmouth soil development in loess of unglaciated southwestern Illinois. Quaternary Science Reviews 22, (2003). 225244.Google Scholar
INTA Mapa de Suelos de la Provincial de Buenos Aires. Secretaria Agricultura Ganadería y Pesca. (1989). Programa Nacionales Unidas par el Desarrollo, Buenos Aires.Google Scholar
Imbellone, P.A., and Teruggi, M.E. Paleosols in loess deposits of the Argentine Pampas. Quaternary International 17, (1993). 4955.Google Scholar
Imbellone, P.E., and Cumba, A. Una sucesión con paleosuelos superpuestos del Pleistoceno medio tardío-Holoceno, zona sur de la Plata, provincia de Buenos Aires. Revista de la Asociación Argentina de Sedimentología 10, (2003). 322.Google Scholar
Iriondo, M.H. Models of deposition of loess and loessoids in the Upper Quaternary of South America. Journal of South American Earth Sciences 10, (1997). 7179.Google Scholar
Iriondo, M.H. Climatic changes in the South American plains: records of a continent-scale oscillation. Quaternary International 57–58, (1999). 93112.Google Scholar
Jackson, M.L., Sayin, M., and Clayton, R.N. Hexafluorosilicic acid reagent modification for quartz isolation. Soil Science Society of America Journal 40, (1976). 958960.Google Scholar
Kemp, R.A. Pedogenic modification of loess: significance for palaeoclimatic reconstructions. Earth Science Reviews 54, (2001). 145156.Google Scholar
Kemp, R.A., Derbyshire, E., and Meng, X.M. A high-resolution micromorphological record of changing landscapes and climates on the western Loess Plateau of China during Oxygen Isotope Stage 5. Palaeogeography, Palaeoclimatology, Palaeoecology 170, (2001). 157169.Google Scholar
Kemp, R.A., Toms, P.S., Sayago, J.M., Derbyshire, E., King, M., and Wagoner, L. Micromorphology and OSL dating of the basal part of the loess–paleosol sequence at La Mesada in Tucumán province, Northwest Argentina. Quaternary International 106/107, (2003). 111117.Google Scholar
Kemp, R.A., Toms, P.S., King, M., and Kröhling, D.M. The pedosedimentary evolution and chronology of Tortugas, a Late Quaternary type-site of the northern Pampa, Argentina. Quaternary International 114, (2004). 101112.Google Scholar
Kemp, R.A., King, M., Toms, P., Derbyshire, E., Sayago, J.M., and Collantes, M.M. Pedosedimentary development of part of a Late Quaternary loess–palaeosol sequence in Northwest Argentina. Journal of Quaternary Science 19, (2004). 567576.Google Scholar
Kröhling, D.M. Upper Quaternary geology of the lower Carcaraňá Basin, North Pampa, Argentina. Quaternary International 57/58, (1999). 135148.Google Scholar
Kröhling, D.M. Sedimentological maps of the typical loessic units in North Pampa, Argentina. Quaternary International 62, (1999). 4955.Google Scholar
Lee, J.A., Kemp, R.A., (1992). Thin Sections of Unconsolidated Sediments and Soils: a Recipe. Centre for Environmental Analysis and Management Technical Report, Department of Geography, Royal Holloway, University of London.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, (1987). 129.Google Scholar
McDonald, E.V., and Busacca, A.J. Interaction between aggrading geomorphic surfaces and the formation of a Late Pleistocene paleosol in the Palouse loess of eastern Washington state. Geomorphology 3, (1990). 449470.Google Scholar
Mestdagh, H., Haesarts, P., Dodonov, A., and Hus, J. Pedosedimentary and climatic reconstruction of the last interglacial and early glacial loess–paleosol sequence in South Tadzhikistan. Catena 35, (1999). 197218.Google Scholar
Mücher, H.J., and Vreeken, W.J. (Re)deposition of loess in Southern Limbourg, the Netherlands. 2. Micromorphology of the Lower Silt Loam Complex and comparison with deposits produced under laboratory conditions. Earth Surface Processes and Landforms 6, (1981). 355363.Google Scholar
Muhs, D.R., and Zárate, M. Late Quaternary eolian records of the Americas and their paleoclimatic significance. Markgraf, V. Interhemispheric Climate Linkages. (2001). Academic Press, San Diego. 183226.Google Scholar
Muhs, D.R., Bettis, E.A. III, Been, J., and McGeehin, J.P. Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi River Valley. Soil Science Society of America Journal 65, (2001). 17611777.Google Scholar
Muhs, D.R., Ager, T.A., Bettis, E.A. III, McGeehin, J., Been, J.M., Begét, J.E., Pavich, M.J., Stafford, T.W. Jr., and Stevens, D.A.S.P. Stratigraphy and paleoclimatic significance of Late Quaternary loess–paleosol sequences of the Last Interglacial–Glacial cycle in central Alaska. Quaternary Science Reviews 22, (2003). 19471986.Google Scholar
Murray, A.S., and Funder, S. Optically stimulated luminescence dating of a Danish Eemian coastal marine deposit: a test of accuracy. Quaternary Science Reviews 22, (2003). 11771183.Google Scholar
Murray, A.S., Wintle, A.G., and Wallinga, J. Dose estimation using quartz OSL in the non-linear region of the growth curve. Radiation Protection Dosimetry 101, (2002). 371374.Google Scholar
Nabel, P.E., Camilión, M.C., Machado, G.A., Spiegelman, A., and Mormeneo, L. Magneto y litoestrafigrafía de los sedimentos pampeanos en los alrededores de la ciudad de Baradero, Provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 48, (1993). 193206.Google Scholar
Olley, J.M., Pietsch, T., and Roberts, R.G. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology 70, (2004). 337358.Google Scholar
Prescott, J.R., and Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, (1994). 497500.Google Scholar
Prieto, A. Late Quaternary vegetational and climatic changes in the Pampa grassland of Argentina. Quaternary Research 45, (1996). 7388.Google Scholar
Reineck, H.E., and Singh, I.B. Depositional Sedimentary Environments. (1980). Springer-Verlag, New York.Google Scholar
Riggi, J.C., Fidalgo, F., Martinez, O., and Porro, N. Geología de los sedimentos pampeanos en el área de la Plata. Revista de la Asociación Geológica Argentina (1986). 316333.Google Scholar
Sanabria, J., and Arguello, G. La edad de los materiales parentales loéssicos de los suelos y desarrollo del perfil, en un sector de la plataforma basculada, Córdoba, Argentina. Resúmenes de XI Congreso Latinoamericano de la Ciencia del Suelo, Temuco, Chile. (1999). 210214.Google Scholar
Schellenberger, A., Heller, F., and Veit, H. Magnetostratigraphy and magnetic susceptibility of Las Carreras loess–paleosol sequence in Valle de Tafí, Tucumán, NW Argentina. Quaternary International 106/107, (2003). 159167.Google Scholar
Singhvi, A.K., Bluszcz, A., Bateman, M.D., and Someshwar Rao, M. Luminescence dating of loess–palaeosol sequences and coversands: methodological aspects and palaeoclimatic implications. Earth Science Reviews 54, (2001). 193211.CrossRefGoogle Scholar
Soil Survey Staff Keys to Soil Taxonomy. Soil Management Support Services Technical Monograph vol. 19, (1992). Pocahontas Press, Blacksburg, VA.Google Scholar
Teruggi, M.E. The nature and origin of Argentine loess. Journal of Sedimentary Petrology 27, (1957). 322332.Google Scholar
Toms, P.S., King, M., Zárate, M.A., Kemp, R.A., Foit, F.F. Jr. Geochemical characterization, correlation and optical dating of tephra in alluvial sequences of central western Argentina. Quaternary Research 62, (2004). 6075.Google Scholar
Tonni, E.P., Nabel, P., Cione, A.L., Etchichury, M., Tófalo, R., Scillato Yané, G., San Cristóbal, J., Carlini, A., and Vargas, D. The Ensenada and Buenos Aires formations (Pleistocene) in a quarry near La Plata, Argentina. Journal of South American Earth Sciences 12, (1999). 273291.CrossRefGoogle Scholar
Zárate, M. Loess of southern South America. Quaternary Science Reviews 22, (2003). 19972006.Google Scholar
Zárate, M., and Paez, M. Los paleoambientes del Pleistoceno-Holoceno en la cuenca del arroyo La Estacada, Mendoza. Trombotto, D., and Villalba, R. 30 Años de Investigación Básica y Aplicada en Ciencias Ambientales. (2002). Instituto de Nivología, Glaciología y Ciencias Ambientales, Mendoza. 117122.Google Scholar
Zimmerman, D.W. Thermoluminescence dating using fine grains from pottery. Archaeometry 13, (1971). 2952.Google Scholar
Zinck, J.A., and Sayago, J.M. Loess–paleosol sequence of La Mesada in Tucumán province, northwest Argentina: characterization and paleoenvironmental interpretation. Journal of South American Earth Sciences 12, (1999). 293310.Google Scholar
Zinck, J.A., and Sayago, J.M. Climatic periodicity during the late Pleistocene from a loess–paleosol sequence in northwest Argentina. Quaternary International 78, (2001). 1116.Google Scholar