Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T10:54:08.588Z Has data issue: false hasContentIssue false

Paleoclimate Deduced from a Multidisciplinary Study of a Half-Million-Year-Old Stalagmite from Rana, Northern Norway

Published online by Cambridge University Press:  20 January 2017

Stein-Erik Lauritzen
Affiliation:
Department of Geology, Section B, University of Bergen, Allegt. 41, N-5007 Bergen, Norway
Reidar Løvlie
Affiliation:
Institute of Solid Earth Physics, University of Bergen, Allegt 70, N-5007 Bergen, Norway
Dagfinn Moe
Affiliation:
Botanical Museum, University of Bergen, Allegt 14, N-5007 Bergen, Norway
Eivind Østbye
Affiliation:
Section for Zoology, Department of Biology, University of Oslo, P.O. Box 1050 N-0316 Blindern, Oslo 3, Norway

Abstract

A 7-cm-thick flowstone sequence has been dated by extended Uranium series techniques to less than 1.25 myr, with a probable growth interval of ≥350,000–≤730,000 yr B.P. The time span is in accordance with paleomagnetic results revealing normal polarity for the whole sequence, i.e., a depositional age of <730,000 yr B.P. Oxygen isotope variations suggest deposition during three warm periods, interrupted by two isotopically cold hiatuses characterized by bulk resolution and detrital laminae. Calculations suggest that climatic transitions may have involved a shift of 1.1–2.4°C in mean annual temperatures. Contemporary flooding of the cave due to adjacent glacier expansion provides evidence for the widely held view that speleothem deposition is halted by glacier proximity. The flowstone matrix contained appreciable amounts of pollen (pine, birch) as well as larger amounts of charcoal dust. The pollen assemblage suggests a climate comparable with the present, implying that Norway has experienced at least three glacial/interglacial transitions during the growth interval of the speleothem. The warmer periods were characterized by a forest environment, with ample evidence of fire.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, B.G. Bøen, F. Nydal, R. Rasmussen, A. Vallevik, P., (1981). Radiocarbon dates of marginal moraines in Nordland, North Norway Geografiska Annaler 63A 155159 Google Scholar
Bastin, B., (1978). L'analyse pollinique des stalagmites: Une nouvelle possibilite d'approche des fluctuations climatiques du quaternaire Annales de la Societé Geologique de Belgique T101 1319 Google Scholar
Dansgaard, W., (1964). Stable isotopes in precipitation Tellus 16 436468 CrossRefGoogle Scholar
Dimbleby, G.W., (1961). Soil Pollen Analysis Journal of Soil Science 12 1 111 Google Scholar
Epstein, S. Buchsbaum, R. Lowenstam, H. Urey, H.C., (1951). Carbonate-water isotopic scale Geological Society of America Bulletin 62 417426 Google Scholar
Folk, R. Asseretto, R., (1976). Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in a Holocene speleothem, Carlsbad Caverns, New Mexico Journal of Sedimentary Petrology 56 486496 Google Scholar
Ford, D.C. Williams, P.W., (1989). Karst Geomorphology and Hydrology Unwin Hyman London Google Scholar
Gascoyne, M. Ford, D.C. Schwarcz, H.P., (1981). Late Pleistocene chronology and paleoclimate of Vancouver Island determined from cave deposits Canadian Journal of Earth Sciences 18 16431652 Google Scholar
Gascoyne, M. Ford, D.C. Schwarcz, H.P., (1983). Rates of cave and landform development in the Yorkshire Dales from speleothem age data Earth Surface Processes 8 557568 CrossRefGoogle Scholar
Gordon, D. Smart, P. Ford, D.C. Andrews, J.N. Atkinson, T.C. Rowe, P.J. Christopher, N.S.J., (1989). Dating of late Pleistocene interglacial and interstadial periods in the United Kingdom from speleothem growth frequency Quaternary Research 31 1426 Google Scholar
Harmon, R.S. Thompson, P. Schwarcz, H.P. Ford, D.C., (1978). Late Pleistocene Paleoclimates of North America as inferred from stable isotope studies of speleothems Quaternary Research 9 5470 CrossRefGoogle Scholar
Hendy, C.H., (1971). The isotopic geochemistry of speleothems. Part 1. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators Geochimica et Cosmochimica Acta 35 801824 CrossRefGoogle Scholar
Horn, G., (1935). Uber einige Karsthohlen in Norwegen Mitteilung Hohlen und Karstforschung 115 Google Scholar
Inoucki, H. Morinaga, H. Yasyr Kawa, K., (1981). Preliminary report on paleomagnetism of cave deposits Journal of Geomagnetism and Geoelectricity 33 325327 Google Scholar
Ivanovich, M. Harmon, R.S., (1982). Uranium Series Disequilibrium. Applications to Enironmental Problems Clarendon Oxford Google Scholar
Kaland, P.E., (1986). The origin and management of Norwegian coastal heaths as reflected by pollen analysis Behre, K.E. Anthropogenic Indicators in Pollen Diagrams A. A. Balkema 1936 Google Scholar
Latham, A.G. Schwarcz, H.P. Ford, D.C. Pearce, G.W., (1979). Paleomagnetism of stalagmite deposits Nature (London) 280 383385 CrossRefGoogle Scholar
Latham, A.G. Schwarcz, H.P. Ford, D.C. Pearce, G.W., (1982). The paleomagnetism and U-Th dating of three Canadian speleothems: evidence for the westward drift, 5.4-2.1 yr B.P. Canadian Journal of Earth Sciences 19 19851995 Google Scholar
Latham, A.G. Schwarcz, H.P. Ford, D.C., (1986). The paleomagnetism and U-Th dating of Mexican stalagmite, DAS2 Earth and Planetary Science Letters 79 195207 Google Scholar
Latham, A.G. Schwarcz, H.P. Ford, D.C., (1987). Secular variation of the Earth's magnetic field from 18.5 to 15 yr B.P. BP, as recorded in a vancouver Island stalagmite Canadian Journal of Earth Sciences 24 12351241 Google Scholar
Lauritzen, S.E. Ford, D.C. Schwarcz, H.P., (1986). Humic substances in speleothem matrix; paleoclimatic significance Proceedings of the 9th International Speleological Congress Vol. 2 7779 Barcelona, Spain Google Scholar
Løvlie, R. Gilje-Nilsen, H. Lauritzen, S.E., (1988). Revised magnetostratigraphic age estimate of cave sediments from Grønligrotta, Norway Cave Science 15 105108 Google Scholar
Østrem, G. Haakensen, N. Melander, O., (1973). Glacier Atlas of Northern Scandinavia Publication No. 22. Norges Vassdrags- og Elektrisitetsvesen Google Scholar
Morinaga, H. Inoucki, H. Yasyr Kawa, K., (1985). Paleomagnetism and paleotemperature of a stalagmite Journal of Geomagnetism and Geoelectricity 37 823828 CrossRefGoogle Scholar
Paterson, W.S.B., (1981). The Physics of Glaciers Pergamon Elmsford, NY Google Scholar
Quinif, Y. Dupuis, C. Bastin, B. Juvigne, E., (1979). Etude d'une grotte de la Vilaine Sorce (Arbre, Belgique) Annales de la Societé Geologique de Belgique 102 229241 Google Scholar
Rasmussen, A., (1981). The Deglaciation of the Coastal Area NW of Svartisen, Northern Norway Norges Geologiske Undersøkelse 369 1.31 Google Scholar
Shackleton, N.J. Opdyke, N.D., (1973). Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale Quaternary Research 3 3955 CrossRefGoogle Scholar
Turner, G.M. Thompson, R., (1982). Detransformation of the British geomagnetic secular variation record for Holocene times Geophysical Journal of the Royal Astronomical Society 70 789792 Google Scholar