Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T07:27:58.221Z Has data issue: false hasContentIssue false

Quaternary Glaciers and Climate on Cerro Chirripó, Costa Rica

Published online by Cambridge University Press:  20 January 2017

Kenneth H. Orvis
Affiliation:
Department of Geography, University of Tennessee, Knoxville, Tennessee, 37996, E-mail: orvis@utk.edu
Sally P. Horn
Affiliation:
Department of Geography, University of Tennessee, Knoxville, Tennessee, 37996, E-mail: orvis@utk.edu

Abstract

Glacial lake sediments and glacial geomorphology in Valle de las Morrenas, a glacial trough on the north face of Cerro Chirripó, Costa Rica, provide evidence on high-altitude Pleistocene conditions in Central America. The most recent glacier in the valley (Chirripó stage I) receded very rapidly near the end of the Younger Dryas chronozone. Radiocarbon dates on basal organic sediments from lakes beneath upper, middle, and lower limits of that glacier fall close together, and two-sigma calibrated ages overlap for the period 9700–9600 cal yr B.P. Earliest datable transition sediments from the central lake date to 12,360–11,230 cal yr B.P. Larger, older moraines, and associated trimlines, allowed reconstruction of three paleoglaciers (Chirripó stages II, III, and IV). Computer analysis of hypsometry using published tropical-glacier vertical mass balance profiles yields ELAs of 3506–3523, 3515–3537, and 3418–3509 m, respectively; Chirripó II ELA-estimate positions applied to Chirripó I yield an ELA of 3538–3546 m. We infer minimal temperature depressions of 7.4–8.0°C for the Chirripó I–IV stages. Modeling the behavior of modern tropical glaciers yields basinwide net accumulation estimates of 440–620, 550–830, and 960–1760 mm yr−1 for the Chirripó II, III, and IV stages.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Seltzer, G.O., Kelts, K.R., Southon, J. (1997). Holocene paleohydrology of the tropical Andes from lake records. Quaternary Research,47, 7080., Google Scholar
Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., Ram, M., Waddington, E.D., Mayewski, P.A., Zielinski, G.A. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature,362, 527529., Google Scholar
Ames, A., Hastenrath, S. (1996). Mass balance and ice flow of the Uruashraju Glacier, Cordillera Blanca, Peru. Zeitschrift für Gletscherkunde und Glazialgeologie,32, 8389., Google Scholar
Andrews, J.T. (1975). Glacial Systems: An Approach to Glaciers and their Environments. Duxbury Press, North Scituate.Google Scholar
Barquero, J., Ellenberg, L. (1986). Geomorphologie der alpinen Stufe des Chirripó in Costa Rica. Eiszeitalter und Gegenwart,36, 19., Google Scholar
Benn, D.I., Evans, D.J.A. (1998). Glaciers and Glaciation. Arnold, London.Google Scholar
Bergoeing, J.P. (1977). Modelado glaciar en la Cordillera de Talamanca, Costa Rica. Informe Semestral 3344., Google Scholar
Bush, M.B., Colinvaux, P.A. (1990). A pollen record of a complete glacial cycle from lowland Panama. Journal of Vegetation Science,1, 105118., Google Scholar
Bush, M.B., Piperno, D.R., Colinvaux, P.A., De Oliveira, P.E., Krissek, L.A., Miller, M.C., Rowe, W.E. (1992). A 14,300-yr paleoecological profile of a lowland tropical lake in Panama. Ecology,62, 251275., Google Scholar
Calkin, P.E., Young, G.M.. Global glacial chronologies and causes of glaciation. Menzies, J. (1995). Modern Glacial Environments: Processes, Dynamics and Sediments. Butterworth Heinemann, Oxford.975., Google Scholar
Calvo, V.G. (1987). Geologı́a del Macizo de Chirripó, Cordillera de Talamanca, Costa Rica. Universidad de Costa Rica, San José.Google Scholar
Clapperton, C.M., Hall, M., Mothes, P., Hole, M.J., Still, J.W., Helmens, K.F., Kuhry, P., Gemmell, A.M.D. (1997). A Younger Dryas ice cap in the equatorial Andes. Quaternary Research,47, 1328., Google Scholar
(1981). Atlas Estadı́stico de Costa Rica. Dirección General de Estadı́stica y CensosOficina de Planificación Nacional y Polı́tica Económica, San José.Google Scholar
Dohrenwend, R.E. (1972). The Energetic Role of the Trade Wind Inversion in a Tropical Subalpine Ecosystem. Google Scholar
Dornbush, U. (1998). Current large-scale climatic conditions in southern Peru and their influence on snowline altitudes. Erdkunde,52, 4154., Google Scholar
Drummond, M.S., Bordelon, M., De Boer, J.Z., Defant, M.J., Bellon, H., Feigenson, M.D. (1995). Igneous petrogenesis and tectonic setting of plutonic and volcanic rocks of the Cordillera de Talamanca, Costa Rica–Panama, Central American arc. American Journal of Science,295, 875919., Google Scholar
Francou, B., Ribstein, P., Saravia, R., Tiriau, E. (1995). Monthly balance and water discharge of an inter-tropical glacier: Zongo Glacier, Cordillera Real, Bolivia, 16° S. Journal of Glaciology,41, 6167., Google Scholar
Furbish, D.J., Andrews, J.T. (1984). The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. Journal of Glaciology,30, 199211., Google Scholar
Haberyan, K.A., Horn, S.P. (1999). A 10,000 year diatom record from a glacial lake in Costa Rica. Mountain Research and Development,19, 6370., Google Scholar
Hastenrath, S. (1973). On the Pleistocene glaciation of the Cordillera de Talamanca, Costa Rica. Zeitschrift für Gletscherkunde und Glazialgeologie,9, 105121., Google Scholar
Hastenrath, S. (1974). Spuren pleistozäner vereisung in den Altos de Cuchumatanes, Guatemala. Eiszeitalter und Gegenwart,25, 2534., Google Scholar
Hastenrath, S., Ames, A. (1995). Diagnosing the imbalance of Yanamarey Glacier, Cordillera Blanca, Peru. Journal of Geophysical Research (Atmospheres),100, 51055112., Google Scholar
Heine, K. (1989). Die letzteiszeitliche vergletscherung Mexikanischer vulkane als zeugnis hochglazialer aridität in Mittelamerika. Acta Albertina Ratisbonensia,46, 93106., Google Scholar
Heine, K., Heine, J.T. (1996). Late Glacial climatic fluctuations in Ecuador: Glacial retreat during Younger Dryas time. Arctic and Alpine Research,28, 496501., Google Scholar
Hope, G.S., Peterson, J.A., Radok, U., Allison, I. (1976). The Equatorial Glaciers of New Guinea. Results of the 1971–1973 Australian Universities' Expeditions to Irian Jaya: Survey, Glaciology, Meterology, Biology, and Paleoenvironments. Balkema, Rotterdam.Google Scholar
Horn, S.P. (1990). Timing of deglaciation in the Cordillera de Talamanca, Costa Rica. Climate Research,1, 8183., CrossRefGoogle Scholar
Horn, S.P. (1993). Postglacial vegetation and fire history of the Chirripó páramo of Costa Rica. Quaternary Research,40, 107116., CrossRefGoogle Scholar
Horn, S. P., League, B. L. (1998). Sedimentary Charcoal, Magnetic Susceptibility, and Fire History in the Chirripó Paramo, Costa Rica. ;Abstract of poster presented at the 15th Biennial Meeting of the American Quaternary Association,Puerta Vallarta, Mexico.,Sept.1998.Google Scholar
Islebe, G.A., Hooghiemstra, H. (1997). Vegetation and climate history of montane Costa Rica since the last glacial. Quaternary Science Reviews,16, 589604., Google Scholar
Jones, J.R., Lohman, K., Umaña, V.G. (1993). Water chemistry and trophic state of eight lakes in Costa Rica. Verhandlungen, Internationale Vereinigung für Theoretische und Angewandte Limnologie,25, 899905., Google Scholar
Kaser, G., Hastenrath, S., Ames, A. (1996). Mass balance profiles on tropical glaciers. Zeitschrift für Gletscherkunde und Glazialgeologie,32, 7581., Google Scholar
Leyden, B.W. (1995). Evidence of the Younger Dryas in Central America. Quaternary Science Reviews,14, 833839., Google Scholar
Leyden, B.W., Brenner, M., Hodell, D.A., Curtis, J.H. (1993). Late Pleistocene climate in the Central American lowlands. Geophysical Monographs,78, 165178., Google Scholar
Manley, G. (1959). The late-glacial climate of north-west England. Liverpool and Manchester Geological Journal,2, 453456., Google Scholar
Martin, P.S. Paleoclimatology and a tropical pollen profile(1964). Report on the VI International Congress on the Quaternary, Warsaw, 1961. p. 319323., Google Scholar
Meier, M.F., Post, A.S. (1962). Recent variations in mass net budgets of glaciers in western North America. IASH Publication,58, 6377., Google Scholar
Meierding, T.C. (1982). Late Pleistocene glacial equilibrium-line altitudes in the Colorado Front Range: A comparison of methods. Quaternary Research,18, 289310., Google Scholar
Menzies, J.. Glaciers and ice sheets. Menzies, J. (1995). Modern Glacial Environments: Processes, Dynamics and Sediments. Butterworth Heinemann, Oxford.101138., Google Scholar
Mosheim, J.C.. Grupo comagmatico (intrusivo) de Talamanca. Sprechmann, P. (1984). Manual de Geologı́a de Costa Rica. Editorial Universidad de Costa Rica, San José.5354., Google Scholar
Nesje, A. (1992). Topographical effects on the equilibrium-line altitude of glaciers. GeoJournal,27, 383391., Google Scholar
Osborn, G., Clapperton, C., Davis, P.T., Reasoner, M., Rodbell, D.T., Seltzer, G.O., Zielinski, G. (1995). Potential glacial evidence for the Younger Dryas event in the cordillera of North and South America. Quaternary Science Reviews,14, 823832., Google Scholar
Porter, S.C. (1975). Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quaternary Research,5, 2747., Google Scholar
Protti, R. (1996). Evidencias de glaciación en el Valle del General (Costa Rica) durante el Pleistoceno Tardı́o. Revista Geológica de América Central,19/20, 7585., Google Scholar
Rodbell, D.T. (1993). Subdivision of Late Pleistocene moraines in the Cordillera Blanca, Peru, based on rock-weathering features, soils, and radiocarbon dates. Quaternary Research,39, 133143., Google Scholar
Schubert, C. (1988). Climatic changes during the last glacial maximum in northern South American and the Caribbean: A review. Interciencia,13, 128137., Google Scholar
Schubert, W.H., Ciesielski, P.E., Lu, C.G., Johnson, R.H. (1995). Dynamical adjustment of the trade wind inversion layer. Journal of the Atmospheric Sciences,52, 29412952., Google Scholar
Shimizu, C. (1992). Glacial landforms around Cerro Chirripó in Cordillera de Talamanka [sic], Costa Rica. Journal of Geography,101, 615621., Google Scholar
Stuiver, M., Reimer, P.J. (1993). Extended C-14 data base and revised CALIB 3.0 C-14 age calibration program. Radiocarbon,35, 215230., Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M. (1998). INTCAL98 radiocarbon age calibration, 24,000–0 B.P. Radiocarbon,40, 10411083., Google Scholar
Thomas, M.F., Thorp, M.B. (1995). Geomorphic response to rapid climatic and hydrologic change during the late Pleistocene and early Holocene in the humid and sub-humid tropics. Quaternary Science Reviews,14, 193207., Google Scholar
Thouret, J.-C., Van der Hammen, T., Salomons, B., Juvigné, E. (1996). Paleoenvironmental changes and glacial stades of the last 50,000 years in the Cordillera Central, Colombia. Quaternary Research,46, 118., Google Scholar
L., Vázquez-Selem (1998). Glacial Chronology of Iztaccı́huatl Volcano, Central Mexico, Based on Cosmogenic 36Cl Exposure Ages and Tephrochronology. Abstract of poster presented at the 15, th, Biennial Meeting of the American Quaternary Association,Puerta Vallarta, Mexico.,Sept.1998.Google Scholar
Weber, H. (1959). “Los Páramos Costarricense y su Concatenación Fitogeográfico con los Andes Suramericanos.”. Google Scholar
Weyl, R. (1956). Spuren eiszeitlicher vergletscherung in der Cordillera de Talamanca Costa Ricas (Mittelamerika). Neues Jahrbuch für Geologie und Palaontologie,102, 283294., Google Scholar
Weyl, R. (1956). Eiszeitliche gletscherspuren in Costa Rica (Mittelamerika). Zeitschrift für Gletscherkunde und Glazialgeologie,3, 317325., Google Scholar
Wright, H.E. Jr., Mann, D.H., Glaser, P.H. (1984). Piston corers for peat and lake sediments. Ecology,65, 657659., Google Scholar