Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T06:36:55.816Z Has data issue: false hasContentIssue false

Chronology, time averaging, and oxygen isotope composition of harvested marine mollusk assemblages from Ifri Oudadane, northeast Morocco

Published online by Cambridge University Press:  15 November 2021

William Sanchez
Affiliation:
Department of Geology, University of Cincinnati, CincinnatiOhio45221, USA
Yurena Yanes*
Affiliation:
Department of Geology, University of Cincinnati, CincinnatiOhio45221, USA
Jörg Linstädter
Affiliation:
Deutsches Archäologisches Institut, Kommission für Archäologie Außereuropäischer Kulturen (KAAK), Bonn, Germany
Rainer Hutterer
Affiliation:
Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
*
*Corresponding author: Department of Geology, University of Cincinnati, Cincinnati, Ohio45221, USA. E-mail address: yurena.yanes@uc.edu (Y. Yanes).

Abstract

The archaeological site of Ifri Oudadane, NE Morocco, contains well-preserved marine mollusk concentrations throughout the Epipaleolithic (hunting-gathering) and Neolithic (food production) cultural phases, useful to test hypotheses driving such transition. However, the chronology and stratigraphy of harvested shells is complex due to the confluence of human activity and natural deposition processes. This work first quantifies the age and degree of time averaging of archaeological shells and then estimates sea-surface temperatures (SSTs) from the oxygen isotopes of selected specimens. Thirty-four radiocarbon-dated shells exhibited significant time averaging between 310 to 1170 yr that could not be explained by analytical error alone. This finding illustrates the need for individually dating shells in future paleoclimate investigations aiming for high temporal resolution. Nine isotopically analyzed shells dated to the Neolithic phase, between 5700 and 7600 cal yr BP, indicate that assuming constant oxygen isotopes of seawater, SSTs remained consistently warm, between 20°C and 22°C, that is, 2°C–4°C warmer than today. Results point to warmer conditions during the Neolithic, supporting the hypothesis that the rise of a food production mode of life in NE Morocco could have in part been triggered by warming conditions following the colder 8.2 event.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrus, C.F.T., 2011. Shell midden sclerochronology. Quaternary Science Reviews 30, 28922905.CrossRefGoogle Scholar
Bazzicalupo, P, Maiorano, P, Girone, A, Marino, M., Combourieu-Nebout, N., Incarbona, A. 2018. High-frequency climate fluctuations over the last deglaciation in the Alboran Sea, Western Mediterranean: Evidence from calcareous plankton assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 506: 226241.CrossRefGoogle Scholar
Bazzicalupo, P., Maiorano, P., Girone, A., Marino, M., Combourieu-Nebout, N., Incarbona, A., 2020. High-frequency climate fluctuations over the last deglaciation in the Alboran Sea, western Mediterranean: evidence from calcareous plankton assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 506, 226241.CrossRefGoogle Scholar
Bevington, P.R., 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw Hill. New York, NY.Google Scholar
Bright, J., Ebert, C., Kosnik, M.A., Southon, J.R., Whitacre, K., Albano, P.G., Flores, C., et al. , 2021. Comparing direct carbonate and standard graphite 14C determinations of biogenic carbonates. Radiocarbon 63, 387403.CrossRefGoogle Scholar
Bush, S., Santos, Guaciara M., Xiaomei, X., Southon, J.R., Thiagarajan, N., Hines, S.K., Adkins, J.F., 2013. Simple, rapid, and cost effective: a screening method for 14C analysis of small carbonate samples. Radiocarbon 55, 631640.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., Pelejero, C., Canals, M., Sierro, F.J., Flores, J.A., Shackleton, N., 1999. Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography 14, 698705.CrossRefGoogle Scholar
Català, A., Cacho, I., Frigola, J., Pena, L.D., Lirer, F., 2019. Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison. Climate of the Past 15, 927942.CrossRefGoogle Scholar
Cheddadi, R., Lamb, H.F., Guiot, J., Van Der Kaars, S., 1998. Holocene climatic change in Morocco: a quantitative reconstruction from pollen data. Climate Dynamics 14, 883890.CrossRefGoogle Scholar
Colonese, A.C., Mannino, M.A., Bar-Yosef Mayer, D.E., Fa, D.A., Finlayson, J.C., Lubell, D., Stiner, M.C., 2011. Marine mollusc exploitation in Mediterranean prehistory: an overview. Quaternary International 239, 86103.CrossRefGoogle Scholar
Colonese, A.C., Troelstra, S., Ziveri, P., Martini, F., Lo Vetro, D., Tommasini, S., 2009. Mesolithic shellfish exploitation in SW Italy: seasonal evidence from the oxygen isotopic composition of Osilinus turbinatus shells. Journal of Archaeological Science 36, 19351944.CrossRefGoogle Scholar
Dettman, D.L., Reische, A.K., Lohmann, K.C., 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta 63, 10491057.CrossRefGoogle Scholar
Fürsich, F.T., Aberhan, M., 1990. Significance of time-averaging for palaeocommunity analysis. Lethaia 23, 143152.CrossRefGoogle Scholar
Grossman, E.L., Ku, T.L., 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology: Isotope Geoscience Section 59(C), 5974.CrossRefGoogle Scholar
Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E.N., Ramsey, C.B., et al. , 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779820.CrossRefGoogle Scholar
Hutterer, R., Linstädter, J., Eiwanger, J., Mikdad, A., 2014. Human manipulation of terrestrial gastropods in Neolithic culture groups of NE Morocco. Quaternary International 320, 8391.CrossRefGoogle Scholar
Hutterer, R., Schröder, O., Linstädter, J. 2021. Food and ornament: use of shellfish at Ifri Oudadane, a Holocene settlement in NE Morocco. African Archaeological Review 38, 7394.CrossRefGoogle Scholar
Kidwell, S.M., 1998. Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30, 977995.CrossRefGoogle Scholar
Kidwell, S.M., Best, M.M.R., Kaufman, D.S., 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33, 729732.Google Scholar
Kidwell, S.M., Bosence, D.W.J., 1991. Taphonomy and time-averaging of marine shelly faunas. In: Alison, P.A., Briggs, D.E.G. (Eds.) Taphonomy: Releasing the Data Locked in the Fossil Record. New York: Plenum, pp. 115209.CrossRefGoogle Scholar
Koppel, B., Szabó, K., Moore, M.W., Morwood, M.J., 2016. Untangling time-averaging in shell middens: defining temporal units using amino acid racemisation. Journal of Archaeological Science: Reports 7, 741750.Google Scholar
Kowalewski, M., 1996. Time-averaging, overcompleteness, and the geological record. Journal of Geology 104, 317326.CrossRefGoogle Scholar
Kowalewski, M., Casebolt, S., Hua, Q., Whitacre, K.E., Kaufman, D.S., Kosnik, M.A., 2018. One fossil record, multiple time resolutions: disparate time averaging of echinoids and mollusks on a Holocene carbonate platform. Geology 46, 5154.CrossRefGoogle Scholar
Kowalewski, M., Goodfriend, G.A., Flessa, K.W., 1998. High-resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology 24, 287304.Google Scholar
Linstädter, J., Broich, M., Weninger, B., 2016. Defining the Early Neolithic of the Eastern Rif, Morocco—spatial distribution, chronological framework and impact of environmental changes. Quaternary International 472, 272282.CrossRefGoogle Scholar
Linstädter, J., Kehl, M., 2012. The Holocene archaeological sequence and sedimentological processes at Ifri Oudadane, NE Morocco. Journal of Archaeological Science 39, 33063323.CrossRefGoogle Scholar
Linstädter, J., Wagner, G., 2013. The Early Neolithic pottery of Ifri Oudadane, NE Morocco—qualitative and quantitative evidence. Journal of African Archaeology 11, 155196.CrossRefGoogle Scholar
Linstädter, J., Wagner, G., Broich, M., Gibaja Bao, J., Rodríguez, A.d.C., 2015. Neolithic transition and lithic technology: the Epipalaeolithic and Early Neolithic assemblages of Ifri Oudadane, NE-Morocco. Quartär 62, 155184.Google Scholar
Linstädter, J., 2008. The Epipalaeolithic-Neolithic-Transition in the Mediterranean region of Northwest-Africa. Quartär 55, 4162.Google Scholar
Lorenz, S.J., Lohmann, G., 2004. Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene. Climate Dynamics 23, 727743.CrossRefGoogle Scholar
Mannino, M., Thomas, K., Leng, M., Piperno, M., Tusa, S., Tagliacozzo, A., 2007. Marine resources in the Mesolithic and Neolithic at the Grotta dell'Uzzo (Sicily): evidence from isotope analyses of marine shells. Archaeometry 49, 117133.CrossRefGoogle Scholar
Mannino, M.A., Thomas, K.D., Leng, M.J., Sloane, H.J., 2008. Shell growth and oxygen isotopes in the topshell Osilinus turbinatus: resolving past inshore sea surface temperatures. Geo-Marine Letters 28, 309325.CrossRefGoogle Scholar
Martrat, B., Grimalt, J.O., Shackleton, N., Abreu, L.d., Hutterli, M.A., Stocker, T.A., 2007. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 27, 502507.CrossRefGoogle Scholar
Mette, M.J., Whitney, N.M., Ballew, J., Wanamaker, A.D., 2018. Unexpected isotopic variability in biogenic aragonite: a user issue or proxy problem? Chemical Geology 483, 286294.CrossRefGoogle Scholar
Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D., 2008. Continental Evolution: The Geology of Morocco. Springer-Verlag Berlin Heidelberg.CrossRefGoogle Scholar
Milano, S., Prendergast, A.L., Schöne, B.R., 2016. Effects of cooking on mollusk shell structure and chemistry: Implications for archeology and paleoenvironmental reconstruction. Journal of Archaeological Science: Reports 7, 1426.Google Scholar
Milano, S., Lindauer, S., Prendergast, A.L., Hill, E.A., Hunt, C.O., Barker, G., Schone, B.R., 2018. Mollusk carbonate thermal behaviour and its implications in understanding prehistoric fire events in shell middens. Journal of Archaeological Science: Reports 20, 443457.Google Scholar
Morales, J., Pérez Jordà, G., Peña-Chocarro, L., Bokbot, Y., Vera, J.C., Martínez Sánchez, R.M., Linstädter, J., 2016. The introduction of south-western Asian domesticated plants in north-western Africa: an archaeobotanical contribution from Neolithic Morocco. Quaternary International 412, 96109.CrossRefGoogle Scholar
Morales, J., Pérez-Jordà, G., Peña-Chocarro, L., Zapata, L., Ruíz-Alonso, M., López-Sáez, J.A., Linstädter, J., 2013. The origins of agriculture in north-west Africa: macro-botanical remains from Epipalaeolithic and Early Neolithic levels of Ifri Oudadane (Morocco). Journal of Archaeological Science 40, 26592669.CrossRefGoogle Scholar
[NOAA] National Oceanic and Atmospheric Administration, 2012. Climate Prediction Center—North Atlantic Oscillation (NAO). http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml.Google Scholar
New, E., Yanes, Y., Cameron, R.A.D., Miller, J.H., Teixeira, D., Kaufman, D.S., 2019. Aminochronology and time averaging of Quaternary land snail assemblages from colluvial deposits in the Madeira Archipelago, Portugal. Quaternary Research 92, 483496.CrossRefGoogle Scholar
Padgett, A., Yanes, Y., Lubell, D., Faber, M.L., 2019. Holocene cultural and climate shifts in NW Africa as inferred from stable isotopes of archeological land snail shells. The Holocene 29, 10781093.CrossRefGoogle Scholar
Parker, W., Yanes, Y., Mesa Hernández, E., Hernández Marrero, J.C., Pais, J., Surge, D., 2020. Scale of time-averaging in archaeological shell middens from the Canary Islands. The Holocene 30, 258271.CrossRefGoogle Scholar
Parker, W., Yanes, Y., Mesa-Hernández, E., Surge, D., 2020. Oceanic cooling recorded in shells spanning the Medieval Climate Anomaly in the subtropical eastern North Atlantic Ocean. Quaternary Science Reviews 249, 106635.CrossRefGoogle Scholar
Parker, W., Yanes, Y., Surge, D., Mesa-Hernández, E., 2017. Calibration of the oxygen isotope ratios of the gastropods Patella candei crenata and Phorcus atratus as high-resolution paleothermometers from the subtropical eastern Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 487, 251259.CrossRefGoogle Scholar
Pierre, C., 1999. The oxygen and carbon isotope distribution in the Mediterranean water masses. Marine Geology 153, 4155.CrossRefGoogle Scholar
Prendergast, A.L., Azzopardi, M., O'Connell, T.C., Hunt, C., Barker, G., Stevens, R.E., 2013. Oxygen isotopes from Phorcus (Osilinus) turbinatus shells as a proxy for sea surface temperature in the central Mediterranean: a case study from Malta. Chemical Geology 345, 7786.CrossRefGoogle Scholar
Prendergast, A.L., Stevens, R.E., O'Connell, T.C., Fadlalak, A., Touati, M., Al-Mzeine, A., Schöne, B.R., Hunt, C.O., Barker, G., 2016. Changing patterns of eastern Mediterranean shellfish exploitation in the Late Glacial and Early Holocene: oxygen isotope evidence from gastropod in Epipaleolithic to Neolithic human occupation layers at the Haua Fteah cave, Libya. Quaternary International 407, 8093.CrossRefGoogle Scholar
R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Reimer, P.J., McCormac, F.G., 2002. Marine radiocarbon reservoir corrections for the Mediterranean and Aegean Seas. Radiocarbon 44, 159166.CrossRefGoogle Scholar
Shaltout, M., Omstedt, A., 2014. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56, 411443.CrossRefGoogle Scholar
Siani, G., Paterne, M., Arnold, M., Bard, E., Métivier, B., Tisnerat, N., Bassinot, F., 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42, 271280.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T.F., 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35, 137189.CrossRefGoogle Scholar
Stuiver, M., Polach, H.A., 1977. Reporting of 14C data. Radiocarbon 19, 355363.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 2021. CALIB 8.2 (accessed January 20, 2021). http://calib.org.Google Scholar
Wanamaker, A.D. Jr., Kreutz, K.J., Schöne, B.R., Introne, D.S., 2011. Gulf of Maine shells reveal changes in seawater temperature seasonality during the Medieval Climate Anomaly and the Little Ice Age. Palaeogeography, Palaeclimatology, Palaeoecology 302, 4351.CrossRefGoogle Scholar
Weisdorf, J.L., 2005. From foraging to farming: explaining the Neolithic Revolution. Journal of Economic Surveys 19, 561586.CrossRefGoogle Scholar
Yanes, Y., Hutterer, R., Linstädter, J., 2018. On the transition from hunting-gathering to food production in NE Morocco as inferred from archeological Phorcus turbinatus shells. The Holocene 28, 13011312.CrossRefGoogle Scholar
Yanes, Y., Kowalewski, M., Ortiz, J.E., Castillo, C., Torres, T.d., Nuez, J.d.l., 2007. Scale and structure of time-averaging (age mixing) in terrestrial gastropod assemblages from Quaternary eolian deposits of the eastern Canary Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 251, 283299.CrossRefGoogle Scholar
Zapata, L., López-Sáez, J.A., Ruiz-Alonso, M., Linstädter, J., Pérez-Jordà, G., Morales, J., Kehl, M., Peña-Chocarro, L., 2013. Holocene environmental change and human impact in NE Morocco: palaeobotanical evidence from Ifri Oudadane. The Holocene 23, 12861296.CrossRefGoogle Scholar
Zilhão, J., 2014. Early prehistoric navigation in the western Mediterranean: implications for the Neolithic transition in Iberia and the Maghreb. Eurasian Prehistory 11, 185200.Google Scholar