Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-21T07:38:01.498Z Has data issue: false hasContentIssue false

Impact of climate and humans on the range dynamics of the woolly mammoth (Mammuthus primigenius) in Europe during MIS 2

Published online by Cambridge University Press:  14 August 2018

Adam Nadachowski*
Affiliation:
Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
Grzegorz Lipecki
Affiliation:
Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
Mateusz Baca
Affiliation:
Center of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
Michał Żmihorski
Affiliation:
Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Kraków, Poland
Jarosław Wilczyński
Affiliation:
Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
*
*Corresponding author at: Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland. E-mail address: nadachowski@isez.pan.krakow.pl (A. Nadachowski).

Abstract

The woolly mammoth (Mammuthus primigenius) was widespread in almost all of Europe during the late Pleistocene. However, its distribution changed because of population fluctuations and range expansions and reductions. During Marine Oxygen Isotope Stage 2 (MIS 2), these processes were highly dynamic. Our analyses of 318 radiocarbon dates from 162 localities, obtained directly from mammoth material, confirmed important changes in mammoth range between ~28.6 and ~14.1 ka. The Greenland stadial 3 interval (27.5–23.3 ka) was the time of maximum expansion of the mammoth in Europe during MIS 2. The continuous range was soon fragmented and reduced, resulting in the disappearance of Mammuthus during the last glacial maximum from ~21.4 to ~19.2 ka in all parts of the North European Plain. It is not clear whether mammoths survived in the East European Plain. The mammoth returned to Europe soon after ~19.0 ka, and for the next 3–4 millennia played an important role in the lifeways of Epigravettian societies in eastern Europe. Mammoths became extinct in most of Europe by ~14.0 ka, except for core areas such as the far northeast of Europe, where they survived until the beginning of the Holocene. No significant correlation was found between the distribution of the mammoth in Europe and human activity.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aaris-Sørensen, K., 2009. Diversity and dynamics of the mammalian fauna in Denmark throughout the last glacial–interglacial cycle, 115–0 kyr BP. Fossils and Strata 57, 159.Google Scholar
Absolon, K., 1945. Výzkum diluviálni stanice lovcou mamutu v Dolních Vestonícach na Pavlovských kopcich na Morave. Pracovní zapráva za tretí rok 1926. Poligrafia, Brno, Czech Republic.Google Scholar
Aldhouse-Green, S., Pettitt, P., 1998. Paviland Cave: contextualizing the “Red Lady.” Antiquity 72, 756772.Google Scholar
Álvarez-Lao, D.J., García, N., 2010. Chronological distribution of Pleistocene cold-adapted large mammal faunas in Iberian Peninsula. Quaternary International 212, 120128.Google Scholar
Álvarez-Lao, D.J., García, N., 2012. Comparative revision of the Iberian woolly mammoth (Mammuthus primigenius) record into a European context. Quaternary Science Reviews 32, 6474.Google Scholar
Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., et al., 2006. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, 32463257.Google Scholar
Anikovich, M.V., Platonova, N.I., 2014. “Kostenki Project”: the history of Palaeolithic studies in the Kostenki-Borshchevo region. In: von Carnap-Gornheim, C. (Ed.), Traditions and Innovations in History and Culture, Russian Federal Found of Humanities. Murmann Publishers, Wachholtz, pp. 207222.Google Scholar
Arppe, L., Karhu, J.A., 2010. Oxygen isotope values of precipitation and the thermal climate in Europe during the middle to late Weichselian ice age. Quaternary Science Reviews 29, 12631275.Google Scholar
Arslanov, I.A., Voznyachuk, M.N., Kalechits, E.G., Kolesnikov, V.S., 1972. Radiocarbon dating of Palaeolithic sites of Podneprove. [In Russian.] Bulletion Komissji po Izucheniyu Czettvertichnogo Perioda 39, 162165.Google Scholar
Baca, M., Nadachowski, A., Lipecki, G., Mackiewicz, P., Marciszak, A., Popović, D., Socha, P., Stefaniak, K., Wojtal, P., 2017. Impact of climatic changes in the Late Pleistocene on migrations and extinctions of mammals in Europe: four case studies. Geological Quarterly 61, 291304.Google Scholar
Baca, M., Popović, D., Stefaniak, K., Marciszak, A., Urbanowski, M., Nadachowski, A., Mackiewicz, P., 2016. Retreat and extinction of the Late Pleistocene cave bear (Ursus spelaeus sensu lato). Science of Nature . 103, 92.Google Scholar
Barnes, I., Shapiro, B., Lister, A., Kuznetsova, T., Sher, A., Guthrie, D., Thomas, M.G., 2007. Genetic structure and extinction of the woolly mammoth, Mammuthus primigenius . Current Biology 17, 10721075. Supplemental Data (online only) https://doi.org/10.1016/j.cub.2007.05.035.Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuille, W., Carchamp, F., 2012. Impact of climate change on the future of biodiversity. Ecology Letters 14, 365377.Google Scholar
Ben-Dor, M., Gopher, A., Hershkovitz, I., Barkai, R., 2011. Man the fat hunter: the demise of Homo erectus and the emergence of a new hominin lineage in the Middle Pleistocene (ca. 400 kyr) Levant. PLoS ONE 6, e28689.Google Scholar
Berglund, B.E., Håkansson, S., Lagerlund, E., 1976. Radiocarbon dated mammoth (Mammuthus primigenius Blumenbach) finds in south Sweden. Boreas 5, 177191.Google Scholar
Bocherens, H., Bridault, A., Drucker, D.G., Hofreiter, M., Münzel, S.C., Stiller, M., van der Plicht, J., 2014. The last of its kind? Radiocarbon, ancient DNA and stable isotope evidence from a late cave bear (Ursus spelaeus ROSENMÜLLER, 1794) from Rochedane (France). Quaternary International 339–340, 179188.Google Scholar
Bocherens, H., Drucker, D.G., Germonpré, M., Lázničková-Galetová, M., Naito, Y.I., Wissing, C., Brůžek, J., Oliva, M., 2015. Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quaternary International 359–360, 211228.Google Scholar
Brace, S., 2011. Investigating evolutionary processes using ancient and historical DNA of rodent species. PhD dissertation, University of London, London.Google Scholar
Brewer, S., Giesecke, T., Davis, B.A., Finsinger, W., Wolters, S., Binney, H., de Beaulieu, J.-L., et al., 2017. Late-glacial and Holocene European pollen data. Journal of Maps 13, 921928.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Bronk Ramsey, C., Scott, E.M., van der Plicht, J., 2013. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55, 20212027.Google Scholar
Brugère, A., Fontana, L., 2009. Mammoth origin and exploitation patterns at Milovice (area G excepted). In: Oliva M. (Ed.), Milovice: Site of the Mammoth People below the Pavlov Hills—The Question of Mammoth Bone Structures. Brno, Czech Republic, Moravske Zemske Muzeum, pp. 53105.Google Scholar
Chang, D., Knapp, M., Enk, J., Lippold, S., Kircher, M., Lister, A., MacPhee, R.D.E., et al., 2017. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Scientific Reports 7, 44585.Google Scholar
Chernysh, A.P., 1982. Mnogoslojanaja paleoliticheskaja stojanka Molodova I. [In Russian] In: Goretsky, G.I., Ivanova, I.K. (Eds.), Molodova I. Unikal’noe mustjerskoe poselenie na Srednem Dnestre. Nauka, Moscow, pp. 6102.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science 325, 710714.Google Scholar
Coles, B.J., 2000. Doggerland: the cultural dynamics of shifting coastline. Geological Society, London, Special Publications 175, 393401.Google Scholar
Cooper, A., Turney, C., Hughen, K.A., Barry, W., Mcdonald, H.G., Bradshaw, C.J.A., 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science Express 349, 18.Google Scholar
Davies, W., White, D., Lewis, M., Stringer, C., 2015. Evaluating the transitional mosaic: frameworks of change from Neanderthals to Homo sapiens in eastern Europe. Quaternary Sciences Reviews 118, 211242.Google Scholar
De Jong, M.G.G., de Graaff, L.W.S., Seijmonsbergen, A.C., Böhm, A.R., 2011. Correlation of Greenland ice-core isotope profiles and the terrestrial record of the Alpine Rhine glacier for the period 32–15 ka. Climate of the Past Discussions 7, 43354373.Google Scholar
Delibrias, G., Guillier, M.T., Labeyrie, J., 1971. Gif natural radiocarbon measurements VI. Radiocarbon 13, 213254.Google Scholar
Demay, L., Belyaeva, V.I., Kulakovska, L.V., Patou-Mathis, M., Péan, S., Stupak, D.V., Vasil’ev, M.P., Otte, M., Noiret, P., 2016. New evidences about human activities during the first part of the Upper Pleniglacial in Ukraine from zooarchaeological studies. Quaternary International 412A, 1636.Google Scholar
Demay, L., Patou-Mathis, M., Kulakovska, L.V., 2015. Zooarchaeology of the layers from Dorochivtsy III (Ukraine). Quaternary International 359–360, 384405.Google Scholar
Demay, L., Péan, S., Patou-Mathis, M., 2012. Mammoths used as food and building resources by Neanderthals: zooarchaeological study applied to layer 4, Molodova I (Ukraine). Quaternary International 276–277, 212226.Google Scholar
Fellows Yates, J.A., Drucker, D.G., Reiter, E., Heumos, S., Welker, F., Münzel, S.C., Wojtal, P., et al., 2017. Central European Woolly Mammoth population dynamics: insights from Late Pleistocene mitochondrial genomes. Scientific Reports 7, 17714.Google Scholar
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., Chappell, J., 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planetary Science Letters 163, 327342.Google Scholar
Gaudzinski, S., Turner, E., Anzidei, A.P., Álvarez-Fernández, E., Arroyo-Cabrales, J., Cinq-Mars, J., Dobosi, V.T., et al., 2005. The use of Proboscidean remains in every-day Palaeolithic life. Quaternary International 126–128, 179194.Google Scholar
Gavrilov, K.N., Voskresenskaya, E.V., Maschenko, E.N., Douka, K., 2015. East Gravettian Khotylevo 2 site: stratigraphy, archeozoology, and spatial organization of the cultural layer at the newly explored area of the site. Quaternary International 359–360, 335346.Google Scholar
Gramsch, B., Beran, J., Hanik, S., Sommer, R.S., 2013. A Palaeolithic fishhook made of ivory and the earliest fishhook tradition in Europe. Journal of Archaeological Science 40, 24582463.Google Scholar
Gowlett, J.A.J., Hedges, R.E.M., Law, I.A., Perry, C., 1987. Radiocarbon dates from the Oxford AMS system: Datelist 5. Archaeometry 29, 125155.Google Scholar
Guthrie, R.D., 1990. Frozen Fauna of the Mammoth Steppe. University of Chicago Press, Chicago.Google Scholar
Haynes, G., 1991. Mammoths, Mastodonts, and Elephants: Biology, Behavior, and the Fossil Record. Cambridge University Press, Cambridge.Google Scholar
Haynes, G., Klimowicz, J., 2015. Recent elephant-carcass utilization as a basis for interpreting mammoth exploitation. Quaternary International 359–360, 1937.Google Scholar
Hedges, R.E.M., Housley, R.A., Law, I.A., Bronk Ramsey, C., 1989. Radiocarbon dates from the Oxford AMS System: Archaeometry Datelist 9. Archaeometry 31, 207234.Google Scholar
Hofreiter, M., Stewart, J., 2009. Ecological change, range fluctuations and population dynamics during the Pleistocene. Current Biology 19, R584R594.Google Scholar
Holliday, F.T., Hoffecker, J.F., Goldberg, P., Macphail, R.I., Forman, S.L., Anikovich, M., Sinitsyn, A., 2007. Geoarchaelogy of the Kostenki–Borshchevo sites, Don River valley, Russia. Geoarcheology: An International Journal 22, 181228.Google Scholar
Housley, R.A., 2003. Radiocarbon dating. In: Valde-Nowak, P., Nadachowski, A., Madeyska, T. (Eds.), Obłazowa Cave: Human Activity, Stratigraphy and Palaeoenvironment. Institute of Archaeology and Ethnology Polish Academy of Sciences. Kraków, Poland, pp. 8185.Google Scholar
Huber, R., Reinhard, J., 2016. Das letzte Zuger Mammut? Eine Baugrube als Fenster in die späte Eiszeit. Tugium 32, 103110.Google Scholar
Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 145.Google Scholar
Hughes, P.D., Gibbard, P.L., 2015. A stratigraphical basis for the Last Glacial Maximum (LGM). Quaternary International 383, 174185.Google Scholar
Iakovleva, L., Djindjian, F., 2005. New data on Mammoth bone settlements of Eastern Europe in the light of the new excavations of the Gontsy site (Ukraine). Quaternary International 126–128, 195207.Google Scholar
Jacobi, R.M., Higham, T.F.G., 2008. The “Red Lady” ages gracefully: new ultrafiltration AMS determinations from Paviland. Journal of Human Evolution 55, 898907.Google Scholar
Kahlke, R.-D., 2015. The maximum geographic extension of Late Pleistocene Mammuthus primigenius (Proboscidea, Mammalia) and its limiting factors. Quaternary International 370, 147154.Google Scholar
Kalechits, E.G., 2013. History of studies of the Palaeolithic sites in Belarus. [In Russian.] In: Sinitsyna, G.V. (Ed.), Problemy zaseleniya Severno-Zapada Vostochnoj Evropy v verkhnem i finalnom paleolite (kulturno-istoricheske processy). Sbornik Nauchnykh Statej. Institut Istorii Materialnoy Kultury RAN, St.-Petersburg, Russian Federation, pp. 3385.Google Scholar
Katona, L., Kovács, J., Kordos, L., Szappanos, B., Linkai, I., 2012. The Csajág mammoths (Mammuthus primigenius): Late Pleniglacial finds from Hungary and their chronological significance. Quaternary International 255, 130138.Google Scholar
Khlopachev, G.A., 2011. Palaeolithic site Pushkari IX (Bugorok): new data on absolute and relative dating. [In Russian.] In: Radlovskiy Sbornik: nauchnye issledovaniya i muzenye proyekty. MAE RAN, St. Petersburg, pp. 234239.Google Scholar
Khlopachev, G.A., 2015. The Upper Paleolithic settlement of Yudinovo and its significance for studying of Late Paleolithic of the Desna River basin. [In Russian.] MAE RAN. Zamyatnickiy Sbornik 4, 128149.Google Scholar
Kjær, K.H., Lagerlund, E., Adrielsson, L., Thomas, P.J., Murray, A., Sandgren, P., 2006. The first independent chronology of Middle and Late Weichselian sediments from southern Sweden and the island of Bornholm. GFF 128, 209220.Google Scholar
Klima, B., 1963. Dolní Vĕstonice, výsledky výzkumu taboriste lovcu mamutu v letech 1947-1952. Nakladatelství Československé akademie věd, Prague.Google Scholar
Klima, B., 1990. Lovci mamutu z Predmostí. Akademia, Prague.Google Scholar
Kock, S., Huggenberger, P., Preusser, F., Rentzel, P., Wetzel, A., 2009. Formation and evolution of the Lower Terrace of the Rhine River in the area of Basel. Swiss Journal of Geoscience 102, 307321.Google Scholar
Konrád, G., Kovács, J., Halász, A., Sebe, K., Pálffy, H., 2010. Late Quaternary woolly mammoth (Mammuthus primigenius Blum) remains from southern Transdanubia, Hungary. Comptes Rendus Palevol 9, 4754.Google Scholar
Kovács, J., 2012. Radiocarbon chronology of Late Pleistocene large mammal faunas from the Pannonian basin (Hungary). Bulletin of Geosciences 87, 1319.Google Scholar
Kozłowski, J.K., Van Vliet, B., Sachse-Kozłowska, E., Kubiak, H., Zakrzewska, G., 1974. Upper Paleolithic site with dwellings of mammoth bones, Cracow, Spadzista street B. Folia Quaternaria 44, 1110.Google Scholar
Kubiak, H., 1980. The skulls of Mammuthus primigenius (Blumenbach) from Dębica and Bzianka near Rzeszów, South Poland. Folia Quaternaria 51, 3145.Google Scholar
Kufel-Diakowska, B., Wilczyński, J., Wojtal, P., Sobczyk, K., 2016. Mammoth hunting – impact traces on backed implements from a mammoth bone accumulation at Kraków Spadzista (southern Poland). Journal of Archaeological Science 65, 122133.Google Scholar
Kurenkova, E.I., 1978. Radiocarbon dating and palaeogeography of some Upper Palaeolithic sites in the middle part of Desna River valley. [In Russian.] Izvestia Akademii Nauk SSSR . Seria geographicheskaya 1, 102110.Google Scholar
Lipecki, G., Wojtal, P., 1998. Mammal remains. In: Kozłowski, J.K. (Eds.), Complex of Upper Palaeolithic sites near Moravany, Western Slovakia. Vol. 2, Moravany-Lopata II (Excavations 1993-1996). Institute of Archaeology, Jagellonian University, Kraków, Poland, pp. 103126.Google Scholar
Lister, A.M., 2009. Late-glacial mammoth skeletons (Mammuthus primigenius) from Condover (Shropshire, UK): anatomy, pathology, taphonomy and chronological significance. Geological Journal 44, 447479.Google Scholar
Lister, A.M., Stuart, A.J., 2008. The impact of climate change on large mammal distribution and extinction: evidence from the last glacial/interglacial transition. Comptes Rendus Geoscience 340, 615620.Google Scholar
Lister, A.M., Stuart, A.J., 2013. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis: replay to Kuzmin. Quaternary Science Reviews 62, 144146.Google Scholar
Lorenzen, E.D., Nogués-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske, K.A, Ugan, A., et al., 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359364.Google Scholar
Markova, A.K., Puzachenko, A.Y., van Kolfschoten, T., van der Plicht, J., Ponomarev, D.V., 2013. New data on changes in the European distribution of the mammoth and the woolly rhinoceros during the second half of the Late Pleistocene and the early Holocene. Quaternary International 292, 414.Google Scholar
Marks, L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44, 8188.Google Scholar
Mauch Lenardić, J., 2012. Miocene to Late Pleistocene proboscideans of Croatia. Quaternary International 276–277, 120128.Google Scholar
Mix, A.C., Bard, E., Schneider, R., 2001. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627657.Google Scholar
Münzel, S.C., Wolf, S., Drucker, D.G., Conard, N.J., 2016. The exploitation of mammoth in the Swabian Jura (SW-Germany) during the Aurignacian and Gravettian period. Quaternary International 445, 184199.Google Scholar
Musil, R., 1997. Hunting game analysis. In: Svoboda, J. (Ed.), Pavlov I - Northwest. Dolní Vestonice Studies, vol. 4. Akademie věd České republiky, Brno, Czech Republic, pp. 443468.Google Scholar
Musil, R., 2010. Palaeoenvironment at Gravettian sites in central Europe with emphasis on Moravia (Czech Republic). Quartär 57, 95123.Google Scholar
Nadachowski, A., Krajcarz, M., Krajcarz, M.T., Madeyska, T., Ridush, B., Valde-Nowak, P., Wojtal, P., Zarzecka-Szubińska, K., 2015. Fauna kręgowców z wybranych stanowisk strefy pery- i metakarpackiej w młodszym plejstocenie. In: Łanczont, M., Madeyska, T. (Eds.), Paleolityczna ekumena strefy pery- i metakarpackiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin, Poland, pp. 597642.Google Scholar
Nadachowski, A., Lipecki, G., Ratajczak, U., Stefaniak, K., Wojtal, P., 2016. Dispersal events of the saiga antelope (Saiga tatarica) in Central Europe in response to the climatic fluctuations in MIS 2 and the early part of MIS 1. Quaternary International 420, 357362.Google Scholar
Nadachowski, A., Lipecki, G., Wojtal, P., Miękina, B., 2011. Radiocarbon chronology of woolly mammoth (Mammuthus primigenius) from Poland. Quaternary International 245, 186192.Google Scholar
Nerudová, Z., Neruda, P., 2014. Štýřice III (Koněvova St. or Vídeňská St.) – Epigravettian site in Brno city (Czech Republic). IANSA 5, 718.Google Scholar
Nikolskiy, P.A., Pitulko, V.V., 2013. Evidence from the Yana Palaeolithic site, Arctic Siberia, yields clues to the riddle of mammoth hunting. Journal of Archaeological Science 40, 41894197.Google Scholar
Nikolskiy, P.A., Sulerzhitsky, L.D., Pitulko, V.V., 2011. Last straw versus Blitzkreig overkill: climate-driven changes in the Arctic Siberia mammoth population and the Late Pleistocene extinction problem. Quaternary Science Reviews 30, 23092328.Google Scholar
Oberlin, C., Pion, G., 2009. Le corpus des datations radiocarbone et la disparition du Renne. In: Pion, G., Mevel, L. (Eds.), La fin du Paléolithique supérieur dans les Alpes du Nord, le Jura méridional et les régions limitrophes. Approches culturelles et environnementales, Société préhistorique française, Paris 50, 5158.Google Scholar
Oliva, M., 2007. 1. Část. Charakteristika lokalit a inventářů. In: Oliva, M., Klápště, J., Měřínský, Z. (Eds.), Gravettien na Moravě. Dissertationes archaeologicae Brunenses/Pragensesque, 1. Masarykova univerzita, Filozofická fakulta, Brno, Czech Republic, p. 9139.Google Scholar
Oliva, M., 2009. Breaking the vicious circle of mammoth studies. In: Oliva, M. (Ed.), Milovice: Site of the Mammoth People below the Pavlov Hills—The Question of Mammoth Bone Structures. Moravske Zemske Museum Brno, Czech Republic, pp. 292308.Google Scholar
Palkopoulou, E., Baca, M., Abramson, N.I., Sablin, M., Socha, P., Nadachowski, A., Prost, S., et al., 2016. Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings. Global Change Biology 22, 17101721.Google Scholar
Palkopoulou, E., Dalén, L., Lister, A.M., Vartanyan, S., Sablin, M., Sher, A., Nyström Edmark, V., et al., 2013. Holarctic genetic structure and range dynamics in the woolly mammoth. Proceedings of the Royal Society B: Biological Sciences 280, 20131910.Google Scholar
Praslov, N.D., Rogachev, A.N. (Eds.), 1982. Paleolit Kostenkovsko-Borshchevskogo raiona na Donu 1879–1979. Nauka, Leningrad.Google Scholar
Puzachenko, A.Y., Markova, A.K., Kosintsev, P.A., van Kolfschoten, T., van der Plicht, J., Kuznetsova, T.V., Tikhonov, A.N., Ponomarev, D.V., Kuitems, M., Bachura, O.P., 2017. The Eurasian mammoth distribution during the second half of the Late Pleistocene and the Holocene: regional aspects. Quaternary International 445, 7188.Google Scholar
QGIS Development Team. 2009. Quantum GIS Geographic Information System: Open Source Geospatial Foundation Project (accessed May 20, 2017). http://qgis.osgeo.org.Google Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al., 2014. A stratigraphic framework for abrupt climatic changes during the last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.Google Scholar
Raynal, J-P., Lafarge, A., Rémy, D., Delvigne, V., Guadelli, J.-L., Costamagno, S., Le Gall, O., et al., 2014. Datations SMA et nouveaux regards sur l’archéo-séquence du Rond-du-Barry (Polignac, Haute-Loire). Comptes Rendus Palevol 13, 623636.Google Scholar
R Development Core Team. 2016. R: A Language and Environment for Statistical Computing (accessed August 01, 2016). R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Rustioni, M., Ferretti, M.P., Mazza, P., Pavia, M., Varola, A., 2003. The vertebrate fauna from Cardamone (Apulia, southern Italy): an example of Mediterranean mammoth fauna. In: Reumer, J.W.F., de Vos, J., Mol, D. (Eds.), Advances in Mammoth Research (Proceedings of the Second International Mammoth Conference, Rotterdam, May 16–20, 1999). DEINSEA 9, 395–403.Google Scholar
Šída, P., Nývltová-Fišáková, M., Verpoorte, A., 2006. Svobodné Dvory near Hradec Králové: an Upper Palaeolithic hunting site and its dating. Archeologické rozhledy 58, 772780.Google Scholar
Sinitsyn, A.A., 2003. A Paleolithic Pompeii at Kostenki, Russia. Antiquity 295, 914.Google Scholar
Sinitsyn, A.A., Praslov, N.D., Svezhentsev, Y.S., Sulerzhitsky, L.D., 1997. Radiocarbon chronology of Upper Palaeolithic of Eastern Europe. [In Russian.] In: Sinitsyn, A.A., Praslov, N.D. (Eds.), Radiocarbon Chronology of Palaeolithic of Eastern Europe and Northern Asia: Problems and Perspectives. Institut Istorii Materialnoy Kultury RAN, St. Petersburg, pp. 2166.Google Scholar
Soffer, O., 1985. The Upper Paleolithic of the Central Russian Plain. Academic Press, Orlando, FL.Google Scholar
Soffer, O., 1993. Upper Paleolithic adaptation in Central and Eastern Europe and man-mammoth interactions. In: Soffer, O., Praslov, D. (Eds.), From Kostienki to Clovis. Plenum Press, New York, pp. 3149.Google Scholar
Soffer, O., Adovasio, J.M., Kornietz, N.L., Velichko, A.A., Gribchenko, Y.N., Lenz, B.R., Suntsov, V.Y., 1997. Cultural stratigraphy at Mezhirich, an Upper Palaeolithic site in Ukraine with multiple occupations. Antiquity 71, 4862.Google Scholar
Sommer, R.S., Kalbe, J., Ekström, J., Benecke, N., Liljegren, R., 2014. Range dynamics of the reindeer in Europe during the last 25,000 years. Journal of Biogeography 41, 298306.Google Scholar
Sommer, R.S., Nadachowski, A., 2006. Glacial refugia of mammals in Europe: evidence from fossil records. Mammal Review 36, 252265.Google Scholar
Steenstrup, J., 1889. Mammuthjaeger-Stationen ved Předmost, i det Østerrigske Kronland Mähren, efter et Besøg der i Juni-Juli 1888. Overs. Over d. K.D. Vidensk. Selsk. Forh, 1888, Kopenhagen, pp. 145–212.Google Scholar
Steffensen, J.P., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., et al., 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680684.Google Scholar
Stewart, J.R., Lister, A.M., Barnes, I., Dalén, L., 2010. Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society B: Biological Sciences 277, 661671.Google Scholar
Stuart, A.J., 2015. Late Quaternary megafaunal extinctions on the continents: a short review. Geological Journal 50, 338363.Google Scholar
Stuart, A.J., Kosintsev, P.A., Higham, T.F.G., Lister, A.M., 2004. Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature 431, 684689.Google Scholar
Stuart, A.J., Lister, A.M., 2012. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quaternary Science Reviews 51, 117.Google Scholar
Stuart, A.J., Lister, A.M., 2014. New radiocarbon evidence on the extirpation of the spotted hyaena (Crocuta crocuta (Erxl.)) in northern Eurasia. Quaternary Science Reviews 96, 108116.Google Scholar
Stuart, A.J., Sulerzhitsky, L.D., Orlova, L.A., Kuzmin, Y.V., Lister, A.M., 2002. The latest woolly mammoths (Mammuthus primigenius Blumenbach) in Europe and Asia: a review of the current evidence. Quaternary Science Reviews 21, 15591569.Google Scholar
Sulerzhitsky, L.D., 1995. Features of the radiocarbon chronology of mammoth (Mammuthus primigenius) in Siberia and north of Europe. [In Russian.] Proceedings of the Zoological Institute of the Russian Academy of Sciences . 263, 163183.Google Scholar
Sulerzhitsky, L.D., 2004. The chronological span of some Late Palaeolithic sites according to the radiocarbon dating of the bones of megafauna. [In Russian.] Rossiyskaya Arkheologia 3, 103112.Google Scholar
Sulerzhitsky, L.D., Pettitt, P., Bader, N.O., 2000. Radiocarbon dates on the remains from the settlement Sunghir. [In Russian with English summary.] In: Alexeeva, T.I., Bader, N.O., Munchaev, R.M., Buzhilova, A.P., Kozlovskaya, M.V., Mednikova, M.B. (Eds.), Homo sungirensis. Upper Palaeolithic Man: Ecological and Evolutionary Aspects in the Investigation. Scientific World, Moscow, pp. 3033.Google Scholar
Sümegi, P., Hertelendi, E., 1998. Reconstruction of microenvironmental changes in the Kopasz Hill loess area at Tokaj (Hungary) between 15 and 70 ka BP. Radiocarbon 40, 855863.Google Scholar
Svendsen, J.I., Pavlov, P., 2003. Mamontovaya Kurya: an enigmatic, nearly 40 000 years old Paleolithic site in the Russian Arctic. Trabalhos de Arqueologia 33, 109120.Google Scholar
Svensson, A., Andersen, K.K., Bigler, B., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., et al., 2006. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 2: comparison to other records. Quaternary Science Reviews 25, 32583267.Google Scholar
Svezhentsev, Y.S., 1993. Radiocarbon chronology for the Upper Palaeolithic sites on the East European Plain. In: Soffer, O., Praslov, N.D. (Eds.), From Kostenki to Clovis: Upper Palaeolithic Paleo-Indian Adaptations. Plenum Press, New York, pp. 2330.Google Scholar
Svoboda, J., 2001. Gravettian mammoth bone deposits in Moravia. In: The World of Elephants – Proceedings of the First International Congress. Consiglio Nazionale delle Ricerche, Rome, pp. 359–362.Google Scholar
Svoboda, J., Pean, S., Wojtal, P., 2005. Mammoth bone deposits and subsistence practices during mid-upper Palaeolithic in Central Europe: three cases from Moravia and Poland. Quaternary International 126–128, 209221.Google Scholar
Thieme, H., Veil, S., 1985. Neue Untersuchungen zum eemzeitlichen Elefanten-Jagdplaz Lehringen. Ldkr. Verden. Die Kunde N.F. 36, 11–58.Google Scholar
Ukkonen, P., Aaris-Sørensen, K., Arppe, L., Clark, P.U., Daugnora, L., Lister, A.M., Lõugas, L., et al., 2011. Woolly mammoth (Mammuthus primigenius Blum.) and its environment in northern Europe during the last glaciation. Quaternary Science Reviews 30, 693712.Google Scholar
Ukkonen, P., Arppe, L., Houmark-Nielsen, M., Kjær, K., Karhu, J., 2007. MIS 3 mammoth remains from Sweden – implications for faunal history, palaeoclimate and glaciation chronology. Quaternary Science Reviews 26, 30813098.Google Scholar
Ukkonen, P., Lunkka, J.P., Jungner, H., Donner, J., 1999. New radiocarbon dates from Finnish mammoths indicating large ice-free areas in Fennoscandia during the Middle Weichselian. Journal of Quaternary Science 14, 711714.Google Scholar
Valde-Nowak, P., Nadachowski, A., Wolsan, M., 1987. Upper Palaeolithic boomerang made of a mammoth tusk in south Poland. Nature 329, 436438.Google Scholar
Van Andel, T.H., Davis, W. (Eds.), 2003. Neanderthals and Modern Humans in the European Landscape during the Last Glaciation: Archaeological Results of the Stage 3 Project. McDonald Institute Monographs Series. Short Run Press, Exeter, UK.Google Scholar
Van der Plicht, J., Palstra, S.W.L., 2016. Radiocarbon and mammoth bones: what’s in a date. Quaternary International 406, 246251.Google Scholar
Verpoorte, A., 2001. Places of Art, Traces of Fire: A Contextual Approach to Anthropomorphic Figurines in the Pavlovian (Central Europe, 29–24 kyr BP). PhD dissertation, Faculty of Archaeology, University of Leiden, Leiden, the Netherlands.Google Scholar
Verpoorte, A., 2002. Radiocarbon dating the Upper Palaeolithic of Slovakia. Results, problems and prospects. Archäologisches Korrespondenzblatt 32, 311325.Google Scholar
Verpoorte, A., 2004. Eastern Central Europe during the Pleniglacial. Antiquity 78, 257266.Google Scholar
Verpoorte, A., 2009. Limiting factors on early modern human dispersals: the human biogeography of late Pleniglacial Europe. Quaternary International 201, 7785.Google Scholar
Vlačiky, M., 2009. Carnivores from Trenčianské Bohuslavice – Pod Tureckom and Moravany – Lopata II, two Gravettian open-air sites in Slovakia. Acta carsologica slovaca, Liptovský Mikuláš 47, 113124.Google Scholar
Vörös, I., 2000. Bodrogkeresztúr-Henye, hunted animals from the Upper Palaeolithic site. In: V. Dobosi (Ed.), Bodrogkeresztúr-Henye (NE-Hungary), Upper Palaeolithic Site. Magyar Nemzeti Múzeum, Budapest, pp. 113186.Google Scholar
Wankel, J., 1890. Loziska mamutí v Predmosti. In: Casopis Vlasteneckého Musejního Spolku 7. Olomouc, Czech Republic.Google Scholar
Wilczyński, J., 2015. Animal remains discovered at the Jaksice II site (2010-2014 excavations). In: Wilczyński, J. (Ed.), A Gravettian Site in Southern Poland: Jaksice II. Institute of Systematics and Evolution of Animals. Polish Academy of Sciences, Kraków, Poland, pp. 99114.Google Scholar
Wilczyński, J., Wojtal, P., Łanczont, M., Mroczek, P., Sobieraj, D., Fedorowicz, S., 2015a. Loess, flints and bones: multidisciplinary research at Jaksice II Gravettian site (southern Poland). Quaternary International 359–360, 114130.Google Scholar
Wilczyński, J., Wojtal, P., Robličkova, M., Oliva, M., 2015b. Dolní Vĕstonice I (Pavlovian, the Czech Republic) – results of zooarchaeological studies of the animal remains discovered on the campsite (excavation 1924–52). Quaternary International 379, 5870.Google Scholar
Wilczyński, J., Wojtal, P., Sobczyk, K., 2012. Spatial organization of the Gravettian mammoth hunters’ site at Kraków Spadzista (southern Poland). Journal of Archaeological Science 39, 36273642.Google Scholar
Wilczyński, J., Wojtal, P., Sobieraj, D., Sobczyk, K., 2015c. Kraków Spadzista trench C2: new research and interpretations of Gravettian settlement. Quaternary International 359–360, 96113.Google Scholar
Wiśniewski, A., Wojtal, P., Krzemińska, A., Zych, J., Przybylski, B., Badura, J., Ciszek, D., 2009. Unikalne stanowisko szczątków mamuta na Dolnym Śląsku. Przegląd Geologiczny 57, 234242.Google Scholar
Wojtal, P., Sobczyk, K., 2005. Man and woolly mammoth at the Kraków Spadzista Street (B) – taphonomy of the site. Journal of Archaeological Science 32, 193206.Google Scholar
Wojtal, P., Wilczyński, J., 2015a. Hunters of the giants: woolly mammoth hunting during the Gravettian in Central Europe. Quaternary International 379, 7181.Google Scholar
Wojtal, P., Wilczyński, J., 2015b. Zooarchaeological studies of large mammal remains from Kraków Spadzista site – trench C2 and trench E1 (2011–2012 excavations). In: Wojtal, P., Wilczyński, J., Haynes, G. (Eds.), A Gravettian Site in Southern Poland: Kraków Spadzista. Institute of Systematics and Evolution of Animals. Polish Academy of Sciences, Kraków, Poland, pp. 93111.Google Scholar
Wojtal, P., Wilczyński, J., Bocheński, Z.M., Svoboda, J.A., 2012. The scene of spectacular feasts: animal remains from Pavlov I south-east the Czech Republic. Quaternary International 252, 122141.Google Scholar
Wojtal, P., Wilczyński, J., Wertz, K., Svoboda, J., 2016. The scene of a spectacular feast (part II): animal remains from Dolní Vestonice II, the Czech Republic. Quaternary International 466B, 194211.Google Scholar
Wood, S.N., 2017. Generalized Additive Models: An Introduction with R. 2nd ed. CRC Press, Boca Raton, FL.Google Scholar
Woodman, P.C., McCarthy, M., Monaghan, N., 1997. The Irish Quaternary Fauna Project. Quaternary Science Reviews 16, 129159.Google Scholar
Yravedra, J., Domínguez-Rodrigo, M., Santonja, M., Pérez-González, A., Panera, J., 2010. Cut marks on the Middle Pleistocene elephant carcass of Áridos 2 (Madrid, Spain). Journal of Archaeological Science 37, 24692476.Google Scholar
Zenin, V.N., Leshchinskiy, S.V., Zolotarev, K.V., Grootes, P.M., Nadeau, M.-J., 2006. Lugovskoe: geoarchaeology and culture of a paleolithic site. Archaeology, Ethnology and Anthropology of Eurasia 25, 4153.Google Scholar
Zheltova, M.N., 2015. Kostenki 4: Gravettian of the east – not Eastern Gravettian. Quaternary International 359–360, 362371.Google Scholar
Supplementary material: File

Nadachowski et al. supplementary material

Nadachowski et al. supplementary material 1

Download Nadachowski et al. supplementary material(File)
File 1.3 MB