Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-21T13:16:23.077Z Has data issue: false hasContentIssue false

Late Quaternary Paleoclimate in Semiarid Northeastern Brazil from U-Series Dating of Travertine and Water-Table Speleothems

Published online by Cambridge University Press:  20 January 2017

Augusto S. Auler
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, England
Peter L. Smart
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, England

Abstract

Fossil travertine and subaqueous speleothems in presently dry caves suggest periods of enhanced ground-water recharge during the Quaternary Period in semiarid northeastern Brazil. Travertine deposits and water-table speleothems were dated by the 230Th/234U technique, yielding new evidence for the timing of past periods of increased rainfall. The travertine was deposited in two distinct phases, extensive in situ deposits during marine isotope stage 2 and fragmentary, indurated deposits dating to ca. 400,000 yr B.P. (possibly marine isotope stage 10 or 12). Dating of water-table speleothems showed that the regional water table was 13±1 m above the present level at the last glacial maximum. A second site yielded ages suggesting a still higher water table during marine isotope stage 6. These new data demonstrate that northeastern Brazil did not follow the general pattern of a dry last glacial maximum, as suggested by other continental records in Amazonia and southeastern Brazil, and as depicted in recent General Circulation Model (GCM) simulations. Our results thus indicate that significant variability in regional rainfall patterns occurred in the area during glaciations and caution against overgeneralization of paleoclimate patterns.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab'Saber, A.N., (1982). The Paleoclimate and Paleoecology of Brazilian Amazonia. Prance, G.T. Biological Diversification in the Tropics Columbia Univ. Press, New York.4159.Google Scholar
Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Silva, M.F., Soubies, F., Suguio, K., Turcq, B., van der Hammen, T., (1991). Mise en évidence de quatre phases d'ouverture de la fôret dense dans le sud-est de l'Amazonie au cours des 60,000 derniéres années. Premiére comparaison avec d'autres régions tropicales. Comptes Rendues Academie Sciences Paris 312, 673678.Google Scholar
Arz, H.W., Patzold, J., Wefer, G., (1998). Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from Last Glacial marine deposits off northeastern Brazil. Quaternary Research 50, 157166.Google Scholar
Atkinson, T.C., Rowe, P.J., (1992). Applications of dating to denudation chronology and landscape evolution. Ivanovich, M., Harmon, R.S. Uranium Series Disequilibrium. Applications to Earth, Marine and Environmental Sciences Clarendon, Oxford.669703.Google Scholar
Auler, A.S., (1999). Karst Evolution and Palaeoclimate in Eastern Brazil. University of Bristol, .Google Scholar
Bard, E., Arnold, M., Fairbanks, R.G., Hamelin, B., (1993). Radiocarbon. 35, 191199.Google Scholar
Beck, J.W., Récy, J., Taylor, F., Edwards, R.L., Cabioch, G., (1997). Abrupt changes in early Holocene tropical sea surface temperatures derived from coral records. Nature 385, 705707.CrossRefGoogle Scholar
Behling, H., (1997). Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva. Palaeogeography, Palaeoclimatology, Palaeoecology 129, 407422.Google Scholar
Branner, J.C., (1910). Aggraded limestone plains of the interior of Bahia and the climatic changes suggested by them. Geological Society of America Bulletin 22, 187206.Google Scholar
Chaves, S., Renault-Miskovsky, J., (1996). Paléoethnologie, paléoen- vironment et paléoclimatologie du Piauı́, Brésil: Apport de l'étude pollini- que de coprolithes humains recueillis dans le gisement préhistorique de Pedra Furada. Comptes Rendues Academie Sciences Paris 322, 10531060.Google Scholar
Clapperton, C.M., (1993). Nature of environmental changes in South America at the last glacial maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.Google Scholar
Colinvaux, P., De Oliveira, P.E., Moreno, J.E., Miller, M.C., Bush, M.B., (1996). A long pollen record from lowland Amazonia: Forest and cooling in glacial times. Science 274, 8588.CrossRefGoogle Scholar
Crombie, M.K., Arvidson, R.E., Sturchio, N.C., El Alfy, Z., Abu Zeid, K., (1997). Age and isotopic constraints on Pleistocene pluvial episodes in the Western Desert, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 337355.Google Scholar
Czaplewski, N.J., Cartelle, C., (1998). Pleistocene bats from cave deposits in Bahia. Journal of Mammalogy 79, 784803.CrossRefGoogle Scholar
De Oliveira, P.E., Barreto, A.M.F., Suguio, K., (1999). Late Pleistocene/Holocene climatic and vegetational history of the Brazilian caatinga: The fossil dunes of the middle São Francisco River. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 319337.Google Scholar
Dever, L., Fontes, J.C., Riché, G., (1987). Isotopic approach to calcite dissolution and precipitation in soils under semi-arid conditions. Chemical Geology 66, 307314.Google Scholar
Duarte, L., Nogueira, M.I.M., (1983). Vegetais do Quaternario do Brasil III. Flórula do Morro do Chapéu-BA. Coletânea de Trabalhos Paleontológicos do 8° Congresso Brasileiro de Paleontologia. DNPM, Brası́lia.p. 573–578.Google Scholar
Ferraz-Vicentini, K.R., Salgado-Labouriau, M.L., (1996). Palynological analysis of a palm swamp in Central Brazil. Journal of South American Earth Sciences 9, 207219.Google Scholar
Ford, D.C., Lundberg, J., Palmer, A.N., Palmer, M.V., Dreybrodt, W., Schwarcz, H.P., (1993). Uranium-series dating of the draining of an aquifer: The example of Wind Cave, Black Hills, South Dakota. Geological Society of America Bulletin 105, 241250.Google Scholar
Ganopolski, A., Rahmstorf, S., Petoukhov, V., Claussen, M., (1998). Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351356.CrossRefGoogle Scholar
Guilderson, T.P., Fairbanks, R.G., Rubenstone, J.L., (1994). Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science 263, 663665.CrossRefGoogle Scholar
Harzallah, A., Aragão, J.O.R., Sadourny, R., (1996). Interannual rainfall variability in northeast Brazil: Observation and model simulation. International Journal of Climatology 16, 861878.Google Scholar
Hill, C., Forti, P., (1997). Cave Minerals of the World. 2nd ed. National Speleological Society, Huntsville.Google Scholar
Ivanovich, M., Harmon, R.S., (1992). Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Clarendon, Oxford.Google Scholar
Kaufman, A., (1992). An evaluation of several methods for determining 230Th U ages in impure carbonates. Geochimica et Cosmochimica Acta 57, 23032317.Google Scholar
Kronfeld, J., Vogel, J.C., Rosenthal, E., Weinstein-Evron, M., (1988). Age and paleoclimatic implications of the Bet Shean travertines. Quaternary Research 30, 298303.Google Scholar
Kutzbach, J., Gallimore, R., Harrison, S., Behling, P., Selin, R., Laarif, F., (1998). Climate and biome simulation for the past 21,000 years. Quaternary Science Reviews 17, 473506.Google Scholar
Ledru, M.P., Bertaux, J., Sifeddine, A., Suguio, K., (1998). Absence of last glacial records in lowland tropical forests. Quaternary Research 49, 233237.Google Scholar
Livnat, A., Kronfeld, J., (1985). Paleoclimatic implications of U-series dates for lake sediments and travertines in the Arava Rift Valley. Quaternary Research 24, 164172.Google Scholar
Martins, M.R., (1986). Avaliaç ão dos Recursos Hı́dricos das Bacias Hidrográficas do Estado da Bahia: Bacia do Rio Salitre. Centro de Estatı́stica e Informaç ões, Salvador.Google Scholar
Mock, C.J., Bartlein, P.J., (1995). Spatial variability of Late Quaternary palaeoclimates in the western United States. Quaternary Research 44, 425433.Google Scholar
Niewolt, S., (1977). Tropical Climatology. Wiley, London.Google Scholar
Pollard, D., Thompson, S.L., (1997). Climate and ice-sheet mass balance at the last glacial maximum from the Genesis version 2 global climate model. Quaternary Science Reviews 16, 841863.Google Scholar
Ramos, R.P.L., (1975). Precipitation characteristics in the Northeast Brazil dry region. Journal of Geophysical Research 80, 16651678.CrossRefGoogle Scholar
Rind, D., Peteet, D., (1985). Terrestrial conditions at the last glacial maximum and CLIMAP sea-surface temperature estimates: Are they consistent?. Quaternary Research 24, 122.Google Scholar
Roucou, P., Aragão, J.O.R., Harzallah, A., Fontaine, B., Janicot, S., (1996). Vertical motion changes related to north-east Brazil rainfall variability: A GCM simulation. International Journal of Climatology 16, 879891.3.0.CO;2-B>CrossRefGoogle Scholar
Salgado-Labouriau, M.L., Barberi, M., Ferraz-Vicentini, K.R., Parizzi, M.G., (1998). A dry climatic event during the late Quaternary of tropical Brazil. Review of Palaeobotany and Palynology 99, 115129.CrossRefGoogle Scholar
Sarnthein, M., (1978). Sand deserts during glacial maximum and climatic optimum. Nature 272, 4346.Google Scholar
Strang, D. M. D. (1972)., Climatological Analysis of Rainfall Normals in Northeastern Brazil, Report IAE-M-02/72 . Centro Técnico Aeroespacial, São José dos Campos .Google Scholar
Street-Perrott, F.A., Harrison, S.P., (1985). Lake levels and climate reconstruction. Hecht, A.D. Paleoclimate Analysis and Modelling Wiley, Chichester.291340.Google Scholar
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., Bonani, G., (1995). Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269, 379383.Google Scholar
Szabo, B.J., (1990). Ages of travertine deposits in eastern Grand Canyon National Park, Arizona. Quaternary Research 34, 2432.Google Scholar
Szabo, B.J., Kolesar, P.T., Riggs, A.C., Winograd, I.J., Ludwig, K.R., (1994). Paleoclimatic inferences from a 120,000-yr calcite record of water-table fluctuation in Browns Room of Devils Hole, Nevada. Quaternary Research 41, 5969.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.N., Henderson, K.A., Cole-Dai, J., Bolzan, J.F., Liu, K.B., (1995). Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269, 4650.CrossRefGoogle ScholarPubMed
van der Hammen, T., Absy, M.L., (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 247261.Google Scholar
Williams, M.A.J., (1975). Late Pleistocene tropical aridity synchronous in both hemispheres?. Nature 253, 617618.Google Scholar