Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T18:20:56.620Z Has data issue: false hasContentIssue false

New excavations at the late Pleistocene site of Chinchihuapi I, Chile

Published online by Cambridge University Press:  05 April 2019

Tom D. Dillehay*
Affiliation:
Department of Anthropology, Vanderbilt University, Nashville, Tennessee 37205USA Universidad Austral de Chile, Puerto Montt, Chile
Carlos Ocampo
Affiliation:
Departamento de Antropología, Universidad de Tarapacá y Sociedad Chilena de Arqueología
Jose Saavedra
Affiliation:
Ministerio de Obras Publicas, Temuco, Chile
Mario Pino
Affiliation:
Instituto de Ciencias de la Tierra, Universidad Austral de Chile, Valdivia, Chile
Linda Scott-Cummings
Affiliation:
PaleoResearch Institute, Inc., Golden, Colorado 80303, USA
Peter Kovácik
Affiliation:
PaleoResearch Institute, Inc., Golden, Colorado 80303, USA
Claudia Silva
Affiliation:
Colegio de Arqueologos de Chile, Sociedad Chilena de Socioecologia y Etnoecologia
Rodrigo Alvar
Affiliation:
Departamento de Antropologia, Universidad de Chile, Santiago
*
*Corresponding author at: E-mail address: tom.d.dillehay@vanderbilt.edu (T.D. Dillehay).

Abstract

This paper presents new excavation data on the Chinchihuapi I (CH-I) locality within the Monte Verde site complex, located along Chinchihuapi Creek in the cool, temperate Valdivian rain forest of south-central Chile. The 2017 and 2018 archaeological excavations carried out in this open-air locality reveal further that CH-I is an intermittently occupied site dating from the Early Holocene (~10,000 cal yr BP) to the late Pleistocene (at least ~14,500 cal yr BP) and probably earlier. A new series of radiocarbon dates refines the chronology of human use of the site during this period. In this paper, we describe the archaeological and stratigraphic contexts of the recent excavations and analyze the recovered artifact assemblages. A fragmented Monte Verde II point type on an exotic quartz newly recovered from excavations at CH-I indicates that this biface design existed in at least two areas of the wider site complex ~14,500 cal yr BP. In addition, associated with the early Holocene component at CH-I are later Paijan-like points recovered with lithic tools and debris and other materials. We discuss the geographic distribution of diagnostic artifacts from the site and their probable relationship to other early sites in South America.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abarzua, A., Moreno, P.I., 2008. Changing fire regimes in the temperate rainforest region of southern Chile over the last 16,000 yr. Quaternary Research 69, 6271.Google Scholar
Aimola, G., Andrade, C., Mota, L., Parenti, F., 2014. Final Pleistocene and Early Holocene at Sitio do Meio, Piauí—Brazil: stratigraphy and comparison with Pedra Furada. Journal of Lithic Studies 1(2), 524.Google Scholar
Battaglia, V., Grugni, V., Perego, U.A., Angerhofer, N., Gomez-Palmieri, J.E., Woodward, S.R., Achilli, A., Myres, N., Torroni, A., Semino, O., 2013. The first peopling of South America: new evidence from Y-chromosome haplogroup Q. PLoS ONE 8, e71390. http://dx.doi.org/10.1371/journal.pone.0071390 PMID: 23990949.Google Scholar
Benson, K., Franco, T., Dillehay, T.D. 2017. Preliminary Micro-usewear Analysis of Lithics from Chinchihuapi I Site, Chile. Report on file at Vanderbilt University, Nashville, TN.Google Scholar
Bodner, M., Perego, U.A., Huber, G., Fendt, L., Röck, A.W., Zimmermann, B., Olivieri, A., et al. , 2012. Rapid coastal spread of First Americans: novel insights from South America's Southern Cone mitochondrial genomes. Genome Research 22, 811820.Google Scholar
Boëda, E., Clemente, I., Fontugne, M., Lahaye, C., Pino, M., Felice, G. D., Guidon, N., et al. , 2014a. A new late Pleistocene archaeological sequence in South America: the Vale da Pedra Furada (Piauí, Brazil). Antiquity 88, 927–55.Google Scholar
Boëda, E., Lourdeau, A., Lahaye, C., Felice, G.D., Viana, S., Ignacio, C.-C., Mario, P., et al. 2014b. The late Pleistocene industries of Piauí, Brazil: new data. In: Graf, K.E., Ketron, C.V., Waters, M.R. (Eds.), Paleoamerican Odyssey. Texas A&M University Press, College Station, pp. 445465.Google Scholar
Braje, T.J., Dillehay, T.D., Erlandson, J.M., Klein, R.G., Rick, T.C., 2017. Finding the first Americans. Science 358, 592594.Google Scholar
Bryan, A.L., 1986. Paleoamerican prehistory as seen from South America. In: Bryan, A.L. (Ed.), New Evidence for the Pleistocene Peopling of the Americas. University of Maine Press, Orono, pp. 114.Google Scholar
Bryan, A.L., Gruhn, R., 2003. Some difficulties in modeling the original peopling of the Americas. Quaternary International 3, 175179.Google Scholar
Casamiquela, R., Dillehay, T.D., 1989. Vertebrate and invertebrate faunal analysis. In: Dillehay, T.D. (Ed.), Monte Verde: A Late Pleistocene Settlement in Chile. Vol. 1, The Palaeoenvironment and Site Context. Smithsonian Institution Press, Washington, DC, pp. 205225.Google Scholar
Chauchat, C., 2006. Prehistoria de la costa norte del Perú: el Paijanense de Cupisnique. Instituto Francés de Estudios Andinos, Lima.Google Scholar
Collins, M.B., 1997. The lithics from Monte Verde, a descriptive-morphological analysis. In: Dillehay, T.D. (Ed.), Monte Verde: A Late Pleistocene Settlement in Chile. Vol. 2, The Archaeological Context and Interpretation. Smithsonian Institution Press, Washington, DC, pp. 383506.Google Scholar
Denton, G.H., Lowell, T.V., Heusser, C.J., Schlüchter, C., Andersen, B.G., Heusser, L.E., Moreno, P.I., Marchant, D.R., 1999. Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue Drift in the area of the Southern Lake District, Seno Reloncavi, and Isla Grande de Chiloé, Chile. Geografiska Annaler A 81, 167229.Google Scholar
Dillehay, T.D., 1989. Monte Verde: A Late Pleistocene Settlement in Chile. Vol. 1, The Palaeoenvironment and Site Context. Smithsonian Institution Press, Washington, DC.Google Scholar
Dillehay, T.D., 1997. Monte Verde: A Late Pleistocene Settlement in Chile. Vol. 2, The Archaeological Context. Smithsonian Institution Press, Washington, DC.Google Scholar
Dillehay, T.D., 2000. New Prehistory of the Settlement of the Americas. Basic Books, New York.Google Scholar
Dillehay, T.D., Goodbred, S., Pino, M., Vásquez Sánchez, V.F., Rosales Tham, T., Adovasio, J., Collins, M.B., et al. , 2017. Simple technologies and diverse food strategies of the Late Pleistocene and Early Holocene at Huaca Prieta, Coastal Peru. Science Advances 3, 11261190.Google Scholar
Dillehay, T.D., Ocampo, C., Saavedra, J., Sawakuchi, A.O., Vega, R.M., Pino, M., Collins, M.B., et al. 2015. New archaeological evidence for an early human presence at Monte Verde, Chile. PLoS ONE 10(11), e0141923. http://dx.doi.org/10.1371/journal.pone.0141923.Google Scholar
Dillehay, T.D., Pino, M., 1989. Chronology and stratigraphy. In: Dillehay, T.D. (Ed.), Monte Verde: A Late Pleistocene Settlement in Chile. Vol. 1, The Palaeoenvironment and Site Context. Smithsonian Institution Press, Washington, DC, pp. 133146.Google Scholar
Dillehay, T.D., Pino, M., 1997. Site Setting and Stratigraphy. In: Dillehay, T.D. (Ed.), Monte Verde: A Late Pleistocene Settlement in Chile. Vol. 2, The Archaeological Context and Interpretation. Smithsonian Institution Press, Washington, DC, pp. 2539.Google Scholar
Dillehay, T.D., Ramírez, C., Pino, M., Collins, M.B., Rossen, J., Pino-Navarro, J.D., 2008. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320, 784786.Google Scholar
Gibbons, Anne. 2015. Oldest stone tools in the Americas claimed in Chile. Science 350, 6262.Google Scholar
Goebel, T., Waters, M.R., O'Rourke, D.H., 2008. The late Pleistocene dispersal of modern humans in the Americas. Science 319, 14971502. http://dx.doi.org/10.1126/science.1153569 PMID: 18339930.Google Scholar
Graf, K.E., Ketron, C.V., Waters, M.R. (Eds.), 2013. Paleoamerican Odyssey. Texas A&M University Press, College Station.Google Scholar
Heusser, C.J., Heusser, L.E., Lowell, T.V., 1999. Paleoecology of the southern Chilean Lake District–Isla Grande de Chiloé during Middle–Late Llanquihue Glaciation and Deglaciation. Geografiska Annaler A 81, 231284.Google Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Heaton, T.J., 2013. SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP. Radiocarbon 55, 18891903.Google Scholar
Hubbe, M., Harvati, K., Neves, W.A., 2011. Paleoamerican morphology in the context of European and East Asian Late Pleistocene variation: implications for human dispersion into the New World. American Journal of Physical Anthropology 144, 442453.Google Scholar
Lahaye, C., Hernandez, M., Boëda, E., Felice, G.D., Guidon, N., Hoeltz, S.E., Lourdeaux, A., et al. , 2013. Human occupation in South America by 20,000 BC: the Toca da Tira Peia site, Piauí, Brazil. Journal of Archaeological Science 406, 28402847.Google Scholar
Meltzer, D.J., 2009. First Peoples in a New World. University of California Press, Berkeley.Google Scholar
Mendez, C. 2014. Las Industrias Liticas Tempranas de Chile. Pontificia Universidad Catolica del Peru, Lima.Google Scholar
Moreno, P. I., Denton, G.H., Moreno, H., Lowell, T.V., Putnam, A.E., Kaplan, M.R., 2015. Radiocarbon chronology of the last glacial maximum and its termination in northwestern Patagonia. Quaternary Science Reviews 122, 233249.Google Scholar
Moreno, P.I., León, A.L., 2003. Abrupt vegetation changes during the last glacial to Holocene transition in mid-latitude South America. Journal of Quaternary Science 18, 787800.Google Scholar
Moreno, P.I., Lowell, T.V., Jacobson, G.L., Denton, G.H., 1999. Abrupt vegetation and climate change during the last glacial maximum and last termination in the Chilean Lake District: a case from Canal de la Puntilla (41°S). Geografiska Annaler A 81(2), 285311.Google Scholar
Neves, W.A., Hubbe, M., 2005. Cranial morphology of early Americans from Lagoa Santa, Brazil: implications for the settlement of the New World. Proceedings of the National Academy of Sciences USA 102, 1830918314.Google Scholar
Pino, M., 1989. Geology. In: Dillehay, T.D. (Ed.), Monte Verde: A Late Pleistocene Settlement in Chile. Vol. 1, The Palaeoenvironment and Site Context. Smithsonian Institution Press, Washington, DC, pp. 89132.Google Scholar
Politis, G., Gutierrez, M., Scabuzzo, C., 2014. Estado Actual de las Investigaciones en el Sitio Arqueológico Arroyo Seco 2. Serie Monografico 5. INCUAPA-CONICET, Buenos Aires.Google Scholar
Richardson, J.B., 1978. Early man on the Peruvian north coast, early maritime exploitation and the Pleistocene and Holocene environment. In: Bryan, A. (Ed.), Early Man in America from a Circum-Pacific Perspective. University of Alberta Press, Edmonton, pp. 274289.Google Scholar
Scott-Cummings, L., Kovacik, P., 2017. Phytolith, Starch, and Macrofloral Analysis on Samples from Chinchihuapi I, Chile. PaleoResearch, Golden, CO.Google Scholar
Silva, C. 2017. Informe Tecnico de Restos Macro-Florales de Chinchihuapi I. Colegio de Arqueologos de Chile, Santiago.Google Scholar
Skoglund, P., Mallick, S., Chennagiri, N., Reich, D., Skoglund, P., Patterson, N., Bortolini, M.C., Salzano, F.M., Hunemeier, T., Petzl-Erler, M.L., 2015. Genetic evidence for two founding populations of the Americas. Nature 525, 104108.Google Scholar
Stanford, D., Bradley, B., 2013. Across Atlantic Ice: The Origin of America's Clovis Culture. University of California Press, Berkeley.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Vialou, A.V., 2005. Pré-história do Mato Grosso. Vol. 1. Universidade de São Paulo, São Paulo.Google Scholar
Vialou, D. (Ed.), 2011. Peuplements et Préhistoire en Amériques. Éd. du Comité des travaux historiques et scientifiques, Paris.Google Scholar
Supplementary material: File

Dillehay et al. supplementary material

Dillehay et al. supplementary material 1

Download Dillehay et al. supplementary material(File)
File 72.3 MB