Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-20T21:59:59.728Z Has data issue: false hasContentIssue false

Quantifying the erosional impact of a continental-scale drainage capture in the Duero Basin, northwest Iberia

Published online by Cambridge University Press:  17 May 2018

Loreto Antón*
Affiliation:
Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain Grupo de Investigación en Tectonofísica Aplicada, Departamento Geodinámica, Universidad Complutense de Madrid, 28040 Madrid, Spain
Alfonso Muñoz-Martín
Affiliation:
Grupo de Investigación en Tectonofísica Aplicada, Departamento Geodinámica, Universidad Complutense de Madrid, 28040 Madrid, Spain Instituto de Geociencias (UCM, CSIC), 28040 Madrid, Spain
Gerardo De Vicente
Affiliation:
Grupo de Investigación en Tectonofísica Aplicada, Departamento Geodinámica, Universidad Complutense de Madrid, 28040 Madrid, Spain Instituto de Geociencias (UCM, CSIC), 28040 Madrid, Spain
*
*Corresponding author at: Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain. E-mail address: lanton@ccia.uned.es (L. Antón).

Abstract

Formerly closed drainage basins provide exceptional settings for quantifying fluvial incision and landscape dissection at different time scales. Endorheic basins trap all the sediment eroded within the watershed, which allows estimates of post–basin opening erosion patterns. The Duero Basin was a former closed basin and is presently drained by the Duero River into the Atlantic Ocean. During the Cenozoic, the basin experienced a long endorheic period, marked by the formation of continental carbonates and evaporites. The retrogressive erosion of the Atlantic drainage coming from the Portuguese coast subsequently captured the internal drainage, and significant fluvial dissection occurred. Presently, the basin contains a relatively well-preserved sedimentary fill. Gridding and surface fitting in this paper provide the first attempt to reconstruct the surface of the top of the former endorheic sedimentary sequence to quantify the erosional impact of the basin opening. At least 2251±524 km3 of sediment was removed from the formerly closed basin following the start of exorheism. This volume represents a mean basin-surface lowering of 65±13 m. Erosion estimates and landscape dissection patterns are consistent with geologic evidence of progressive establishment of an outward drainage system.

Type
Thematic Set: Fluvial Archives Group (FLAG) Poland
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alonso-Gavilán, G., Armenteros, I., Carballeira, J., Corrochano, A., Huerta, P., Rodríguez, J.M., 2004. Cuenca del Duero. In: Vera, J.A.E. (Ed.), Geología de España. Sociedad Geológica de España-IGME, Madrid, pp. 550556.Google Scholar
Alonso-Zarza, A.M., Armenteros, I., Braga, J.C., Munoz, A., Pujalte, V., Ramos, E., Aguirre, J., et al., 2002. Tertiary. In: Gibbons, W., Moreno, T. (Eds.), The Geology of Spain. Geological Society, Bath, UK, pp. 293334.Google Scholar
Amato, A., Aucelli, P.P.C., Cinque, A., 2003. The long-term denudation rate in the Southern Apennines chain (Italy): a GIS-aided estimation of the rock volumes eroded since middle Pleistocene time. Quaternary International 101, 311.Google Scholar
Antón, L., De Vicente, G., Muñoz-Martín, A., Stokes, M., 2014. Using river long profiles and geomorphic indices to evaluate the geomorphological signature of continental scale drainage capture, Duero basin (NW Iberia). Geomorphology 206, 250261.Google Scholar
Anton, L., Mather, A.E., Stokes, M., Munoz-Martin, A., De Vicente, G., 2015. Exceptional river gorge formation from unexceptional floods. Nature Communications 6, 7963.Google Scholar
Anton, L., Muñoz-Martín, A., 2007. Controles tectonicos y estructurales de la incision fluvial en el centro-oeste de la Cuenca del Duero, NO de Iberia. Geogaceta 43, 5154.Google Scholar
Antón, L., Muñoz-Martin, A., De Vicente, G., 2010. Alpine paleostress reconstruction and active faulting in Western Iberia. Central European Journal of Geosciences 2, 152164.Google Scholar
Antón, L., Munoz Martin, A., De Vicente, G., Finnegan, N.J., 2017. Deciphering fluvial-capture-induced erosional patterns at the continental scale on the Iberian Peninsula. AGU Fall Meeting Abstracts, p. EP33A-1905.Google Scholar
Antón, L., Rodés, A., De Vicente, G., Pallàs, R., Garcia-Castellanos, D., Stuart, F.M., Braucher, R., Bourlès, D., 2012. Quantification of fluvial incision in the Duero Basin (NW Iberia) from longitudinal profile analysis and terrestrial cosmogenic nuclide concentrations. Geomorphology 165–166, 5061.Google Scholar
Antón López, L., 2004. Análisis de la fracturación en un área granítica intraplaca: el Domo de Tormes. PhD dissertation, Universidad Complutense de Madrid, Madrid, p. 195.Google Scholar
Arboleya, M.L., Babaut, J., Owen, L.A., Teixell, A., Finkel, R.C., 2008. Timing and nature of Quaternary fluvial incision in the Ouarzazate foreland basin, Morocco. Journal of the Geological Society of London 165, 10591073.Google Scholar
Armenteros, I., 1991. Contribucion al conocimiento del Mioceno lacustre de la cuenca terciaria del Duero (sector centro-oriental, Valladolid-Penafiel-Sacramenia-Cuellar). Acta Geologica Hispanica 26, 97131.Google Scholar
Armenteros, I., Corrochano, A., Alonso Gavilan, G., Carballeira, J., Rodriguez, J.M., 2002. Duero Basin (northern Spain). In: Gibbons, W., Moreno, T. (Eds.), The Geology of Spain. Geological Society, Bath, UK, pp. 309315.Google Scholar
Babault, J., Loget, N., Van Den Driessche, J., Castelltort, S., Bonnet, S., Davy, P., 2006. Did the Ebro basin connect to the Mediterranean before the Messinian salinity crisis? Geomorphology 81, 155165.Google Scholar
Baena Escudero, R., Díaz del Olmo, F., 1997. Resultados paleomagnéticos de la raña del Hespérico Meridional (Montoro, Córdoba). Geogaceta 21, 3134.Google Scholar
Bellin, N., Vanacker, V., Kubik, P.W., 2014. Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera. Earth and Planetary Science Letters 390, 1930.Google Scholar
Benito-Calvo, A., Pérez-González, A., 2007. Erosion surfaces and Neogene landscape evolution in the NE Duero Basin (north-central Spain). Geomorphology 88, 226241.Google Scholar
Benito-Calvo, A., Pérez-González, A., Pares, J.M., 2008. Quantitative reconstruction of late Cenozoic landscapes; a case study in the Sierra de Atapuerca (Burgos, Spain). Earth Surface Processes and Landforms 33, 196208.Google Scholar
Bétard, F., 2010. Uplift and denudation history at low-elevation passive margins: insights from morphostratigraphic analysis in the SE Armorican Massif along the French Atlantic margin. Comptes Rendus Geoscience 342, 215222.Google Scholar
Briggs, l.C., 1974. Machine contouring using minimum curvature. Geophysics 39, 3948.Google Scholar
Calvo, J.P., Daams, R., Morales, J., Lopez Martinez, N., 1993. Up-to-date Spanish continental Neogene synthesis and paleoclimatic interpretation. Revista de la Sociedad Geologica de Espana 6, 2940.Google Scholar
Casas-Sainz, A.M., de Vicente, G., 2009. On the tectonic origin of Iberian topography. Tectonophysics 474, 214235.Google Scholar
Clift, P.D., Blusztajn, J., Nguyen, A.D., 2006. Large-scale drainage capture and surface uplift in eastern Tibet–SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters 33, L19403.Google Scholar
Corrochano, A., Armenteros, I., 1989. Los sistemas lacustres de la cuenca terciaria del Duero. Acta Geologica Hispanica 24, 259279.Google Scholar
Craddock, W.H., Kirby, E., Harkins, N.W., Zhang, H., Shi, X., Liu, J., 2010. Rapid fluvial incision along the Yellow River during headward basin integration. Nature Geoscience 3, 209213.Google Scholar
Cunha, P.P., 2008. Papel desempeñado por la tectónica, el clima y el eustatismo en la génesis de los depósitos de Raña al pie de la Cordillera Central Portuguesa (Iberia occidental). Geotemas 10, 15071510.Google Scholar
Davis, J.C., 1986. Statistic and Data Analysis in Geology. 2nd ed. Wiley, New York.Google Scholar
Demoulin, A., 2011. Basin and river profile morphometry: a new index with a high potential for relative dating of tectonic uplift. Geomorphology 126, 97107.Google Scholar
De Vicente, G., Cloetingh, S., Van Wees, J.D., Cunha, P.P., 2011. Tectonic classification of Cenozoic Iberian foreland basins. Tectonophysics 502, 3861.Google Scholar
De Vicente, G., Vegas, R., 2009. Large scale distributed deformation controlled topography along the western Africa–Eurasia limit; tectonic constraints. Tectonophysics 474, 124143.Google Scholar
Demoulin, A., Hallot, E., Rixhon, G., 2009. Amount and controls of the Quaternary denudation in the Ardennes massif (western Europe). Earth Surface Processes and Landforms 34, 14871496.Google Scholar
DeVogel, S.B., Magee, J.W., Manley, W.F., Miller, G.H., 2004. A GIS-based reconstruction of late Quaternary paleohydrology: Lake Eyre, arid central Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 113.Google Scholar
DiBiase, R.A., Heimsath, A.M., Whipple, K.X., 2012. Hillslope response to tectonic forcing in threshold landscapes. Earth Surface Processes and Landforms 37, 855865.Google Scholar
DiBiase, R.A., Whipple, K.X., Heimsath, A.M., Ouimet, W.B., 2010. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth and Planetary Science Letters 289, 134144.Google Scholar
Draper, N., Smith, H., 1981. Applied Regression Analysis. 2nd ed. Wiley-Interscience, New York.Google Scholar
Dzurisin, D., 1975. Channel responses to artificial stream capture, Death Valley, California. Geology 3, 309312.Google Scholar
Elez, J., Silva, P.G., Huerta, P., Perucha, M.Á., Civis, J., Roquero, E., Rodríguez-Pascua, M.A., Bardají, T., Giner-Robles, J.L., Martínez-Graña, A., 2016. Quantitative paleotopography and paleogeography around the Gibraltar Arc (South Spain) during the Messinian Salinity Crisis. Geomorphology 275, 2645.Google Scholar
Evans, G., Arche, A., 2002. The flux of siliciclastic sediment from the Iberian Peninsula, with particular reference to the Ebro. Geological Society of London Special Publication 191, 199208.Google Scholar
Finnegan, N.J., Hallet, B., Montgomery, D.R., Zeitler, P.K., Stone, J.O., Anders, A.M., Yuping, L., 2008. Coupling of rock uplift and river incision in the Namche Barwa–Gyala Peri massif, Tibet. Geological Society of America Bulletin 120, 142155.Google Scholar
Gallardo-Millan, J.L., Pérez-González, A., 2000. Magnetoestratigrafia del relleno neogeno en las cuencas del campo de Calatrava (Ciudad-Real). Geotemas (Madrid) 1(Part 1), 101104.Google Scholar
García, A.F., 2006. Thresholds of strath genesis deduced from landscape response to stream piracy by Pancho Rico Creek in the Coast Ranges of central California. American Journal of Science 306, 655681.Google Scholar
Garcia-Castellanos, D., Larrasoaña, J.C., 2015. Quantifying the post-tectonic topographic evolution of closed basins: the Ebro basin (northeast Iberia). Geology 43, 663666.Google Scholar
Garcia-Castellanos, D., Vergés, J., Gaspar-Escribano, J., Cloetingh, S., 2003. Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Journal of Geophysical Research: Solid Earth 108, 2347.Google Scholar
García-Rodríguez, M., Antón, L., Martinez-Santos, P., 2014. Estimating groundwater resources in remote desert environments by coupling geographic information systems with groundwater modeling (Erg Chebbi, Morocco). Journal of Arid Environments 110, 1929.Google Scholar
Geach, M.R., Stokes, M., Telfer, M.W., Mather, A.E., Fyfe, R.M., Lewin, S., 2014. The application of geospatial interpolation methods in the reconstruction of Quaternary landform records. Geomorphology 216, 234246.Google Scholar
Godard, V., Lave, J., Carcaillet, J., Cattin, R., Bourles, D., Zhu, J., 2010. Spatial distribution of denudation in eastern Tibet and regressive erosion of plateau margins. Tectonophysics 491, 253274.Google Scholar
Gutierrez-Elorza, M., Pérez-González, A., 1993. Geomorphology in Spain. In: Walker, H.J., Grabau, W.E. (Eds.), The Evolution of Geomorphology: A Nation-by-Nation Summary of Development. Wiley, Chichester, UK, pp. 397405.Google Scholar
Hack, J.T., 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U. S. Geological Survey 1, 421429.Google Scholar
Hernández-Pacheco, E., 1915. Geología y paleontología del mioceno de Palencia. Museo Nacional de Ciencias Naturales, Madrid.Google Scholar
Hilley, G.E., Porder, S., 2008. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales. Proceedings of the National Academy of Sciences USA 105, 1685516859.Google Scholar
Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., 2008. Hole-Filled Seamless SRTM Data V4. CGIAR Consortium for Spatial Information (accessed October 1, 2016). http://srtm.csi.cgiar.org.Google Scholar
Jiménez-Moreno, G., Fauquette, S., Suc, J.-P., 2010. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Review of Palaeobotany and Palynology 162, 403415.Google Scholar
Leverington, D.W., Teller, J.T., Mann, J.D., 2002. A GIS method for reconstruction of late Quaternary landscapes from isobase data and modern topography. Computers and Geosciences 28, 631639.Google Scholar
Martin Serrano, A., 1991. La definicion y el encajamiento de la red fluvial actual sobre el macizo Hesperico en el marco de su geodinamica alpina. Revista de la Sociedad Geologica de Espana 4, 337351.Google Scholar
Mather, A.E., 2000. Adjustment of a drainage network to capture induced base-level change: an example from the Sorbas Basin, SE Spain. Geomorphology 34, 271289.Google Scholar
Mediavilla, R., Martin-Serrano, A., Dabrio, C.J., Santisteban, J.L., 1994. Cenozoic lacustrine deposits in the Duero Basin (Spain). In: Gierlowski-Kordesch, E., Kelts, K. (Eds.), Global Geological Record of Lake Basins. Vol. 1. Cambridge University Press, Cambridge, pp. 5359.Google Scholar
Muñoz, A., Arenas, C., González, A., Luzón, A., Pardo, G., Pérez, A., Villena, J., 2002. Ebro basin (northeastern Spain). In: Gibbons, W., Moreno, T. (Eds.), The Geology of Spain. Geological Society, Bath, UK, pp. 301309.Google Scholar
Navas, J., IGME (Eds.), 2011. GEODE. Mapa Geológico Digital continuo de España [en línea]. Sistema de Información Geológica Contínua (SIGECO). http://cuarzo.igme.es/sigeco/default.htm.Google Scholar
Olivetti, V., Godard, V., Bellier, O., 2016. Cenozoic rejuvenation events of Massif Central topography (France): Insights from cosmogenic denudation rates and river profiles. Earth and Planetary Science Letters 444, 179191.Google Scholar
Pereira, D., Alves, M., Araújo, M., Cunha, P.P., 2000. Estratigrafia e interpretação paleogeográfica do Cenozóico continental do norte de Portugal. Ciências da Terra 14, 7382.Google Scholar
Pérez-González, A., 1982. El cuaternario de la región central de la Cuenca del Duero y sus principales rasgos geomorfológicos. Temas Geológicos y Mineros 6, 717740.Google Scholar
Pérez-González, A., Gallardo, J., 1987. La Raña al sur de la Somosierra y Sierra de Ayllon; un piedemonte escalonado del Villafranquiente medio. Geogaceta 2, 2932.Google Scholar
Pérez-Peña, J.V., Azañón, J.M., Azor, A., Tuccimei, P., Della Seta, M., Soligo, M., 2009. Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix-Baza basin, SE Spain). Geomorphology 106, 206218.Google Scholar
Pineda, A., Huerta, P., Nozal, F., Montes, M., López Olmedo, F., 2011. Mapa Geológico Digital continuo E. 1: 50.000. Zona Cuenca del Duero-Almazán (Zona-2300). In: GEODE Mapa Geológico Digital continuo de España (accessed January 24, 2018). http://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=44df600f5c6241b59edb596f54388ae4.Google Scholar
Portenga, E.W., Bierman, P.R., 2011. Understanding earth’s eroding surface with 10Be. GSA Today 21, 410.Google Scholar
Prince, P.S., Spotila, J.A., Henika, W.S., 2010. New physical evidence of the role of stream capture in active retreat of the Blue Ridge escarpment, southern Appalachians. Geomorphology 123, 305319.Google Scholar
Rodríguez, E., Morris, C., Belz, J., Chapin, E., Martin, J., Daffer, W., Hensley, S., 2005. An Assessment of the SRTM Topographic Products. Technical Report JPL D-31639. Jet Propulsion Laboratory, Pasadena, CA.Google Scholar
Rodríguez-Rodríguez, L., Antón, L., Pallàs, R., García-Castellanos, D., Jiménez-Munt, I., Pastor-Martín, C., 2017. Mapping fluvial terraces with digital elevation models. APGEOM 8º Congresso Nacional de Geomorfologia—Geomorfologia 2017, Livro de Atas, pp. 41–43.Google Scholar
Rosenkranz, R., Schildgen, T., Wittmann, H., Spiegel, C., 2018. Coupling erosion and topographic development in the rainiest place on Earth: reconstructing the Shillong Plateau uplift history with in-situ cosmogenic 10Be. Earth and Planetary Science Letters 483, 3951.Google Scholar
Santisteban, J.I., Alcala, L., Mediavilla, R.M., Alberdi, M.T., Luque, L., Mazo, A., Miguel, I., Morales, J., Perez, B., 1996a. El yacimiento de Tariego de Cerrato; el inicio de la red fluvial actual en el sector de la cuenca del Duero. Cuadernos de Geologia Iberica [Journal of Iberian Geology] 22, 431446.Google Scholar
Santisteban, J.I., Mediavilla, R., Martín-Serrano, A., Dabrio, C.J., 1996b. The Duero Basin: a general overview. In: Friend, P.F., Dabrio, C.J. (Eds.), Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics. Cambridge University Press, Cambridge, pp. 183187.Google Scholar
Schaller, M., Ehlers, T.A., Stor, T., Torrent, J., Lobato, L., Christl, M., Vockenhuber, C., 2016. Spatial and temporal variations in denudation rates derived from cosmogenic nuclides in four European fluvial terrace sequences. Geomorphology 274, 180192.Google Scholar
Schaller, M., von Blanckenburg, F., Hovius, N., Kubik, P.W., 2001. Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth and Planetary Science Letters 188, 441458.Google Scholar
Schaller, M., von Blanckenburg, F., Hovius, N., Veldkamp, A., van den Berg, M.W., Kubik, P.W., 2004. Paleoerosion rates from cosmogenic 10Be in a 1.3 Ma terrace sequence; response of the River Meuse to changes in climate and rock uplift. Journal of Geology 112, 127144.Google Scholar
Scherler, D., Bookhagen, B., Strecker, M.R., 2014. Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India. Journal of Geophysical Research: Earth Surface 119, 83105.Google Scholar
Scherler, D., Bookhagen, B., Wulf, H., Preusser, F., Strecker, M.R., 2015. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India. Earth and Planetary Science Letters 428, 255266.Google Scholar
Shugar, D.H., Clague, J.J., Best, J.L., Schoof, C., Willis, M.J., Copland, L., Roe, G.H., 2017. River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nature Geoscience 10, 370375.Google Scholar
Silva, P.G., Roquero, E., López-Recio, M., Huerta, P., Martínez-Graña, A.M., 2017. Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero drainage basins, Central Spain). Quaternary Science Reviews 166, 188203.Google Scholar
Smith, W.H.F., Wessel, P., 1990. Gridding with continuous curvature splines in tension. Geophysics 55, 293305.Google Scholar
Snyder, N.P., Kammer, L.L., 2008. Dynamic adjustments in channel width in response to a forced diversion: Gower Gulch, Death Valley National Park, California. Geology 36, 187190.Google Scholar
Sobel, E. R., Hilley, G. E., Strecker, M. R., 2003. Formation of internally drained contractional basins by aridity-limited bedrock incision. Journal of Geophysical Research 108, 2344.Google Scholar
Stokes, M., 2008. Plio-Pleistocene drainage development in an inverted sedimentary basin; Vera Basin, Betic Cordillera, SE Spain. Geomorphology 100, 193211.Google Scholar
Stokes, M., Mather, A.E., Harvey, A.M., 2002. Quantification of river-capture-induced base-level changes and landscape development, Sorbas Basin, SE Spain. Geological Society of London Special Publication 191, 2335.Google Scholar
Stokes, M., Mather, A.E., 2000. Response of Plio-Pleistocene alluvial systems to tectonically induced base-level changes, Vera Basin, SE Spain. Journal of the Geological Society of London 157, 303316.Google Scholar
Strahler, A.N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin 63, 1117.Google Scholar
Tew, B.H., Mancini, E.A., 1995. An integrated stratigraphic method for paleogeographic reconstruction; examples from the Jackson and Vicksburg groups of the eastern Gulf Coastal Plain. PALAIOS 10, 133153.Google Scholar
Vegas, R., Banda, E., 1982. Tectonic framework and alpine evolution of the Iberian Peninsula. Earth Evolution Sciences 2, 320343.Google Scholar
Vera, J.A., 2004. Geología de España. Sociedad Geológica de España, Instituto Geológico y Minero de España, Madrid.Google Scholar
Whipple, K.X., Forte, A.M., DiBiase, R.A., Gasparini, N.M., Ouimet, W.B., 2017. Timescales of landscape response to divide migration and drainage capture: implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface 122, 248273.Google Scholar
Willenbring, J.K., Codilean, A.T., McElroy, B., 2013. Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales. Geology 41, 343346.Google Scholar
Willenbring, J.K., von Blanckenburg, F., 2010. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211.Google Scholar
Yenes, M., Monterrubio, S., Nespereira, J., Santos, G., Fernández-Macarro, B., 2015. Large landslides induced by fluvial incision in the Cenozoic Duero Basin (Spain). Geomorphology 246, 263276.Google Scholar