Hostname: page-component-599cfd5f84-9drbd Total loading time: 0 Render date: 2025-01-07T06:08:29.541Z Has data issue: false hasContentIssue false

The 14C Age of the Icelandic Vedde Ash: Implications for Younger Dryas Marine Reservoir Age Corrections

Published online by Cambridge University Press:  18 July 2016

W. E. N. Austin
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, Scotland
Edouard Bard
Affiliation:
CEREGE, JE 192 and FU CNRS 17, Université d'Aix-Marseille III, Europole de l'Arbois, BP 80, 13545 Aix-en-Provence, CEDEX 4, France
J. B. Hunt
Affiliation:
Department of Geography and Geology, Cheltenham and Gloucester College, St. Georges Place, Cheltenham, GL5 OPP, England
Dick Kroon
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, Scotland
J. D. Peacock
Affiliation:
18 McLaren Road, Edinburgh, EH9 2BN, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Increased marine 14C reservoir ages from the surface water of the North Atlantic are documented for the Younger Dryas period. We use terrestrial and marine AMS 14C dates from the time of deposition of the Icelandic Vedde Ash to examine the marine 14C reservoir age. This changed from its modem North Atlantic value of ca. 400 yr to ca. 700 yr during the Younger Dryas climatic event. The increased marine reservoir age has implications for both comparing climatic time series dated by 14C and understanding palaeoceanographic changes that generated the increase.

Type
Papers from the Workshop on Pages Chronologies
Copyright
Copyright © The American Journal of Science 

References

Alley, R. B., Meese, D. A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes, P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A. and Mielinski, A. G. 1993 Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362: 527529.CrossRefGoogle Scholar
Austin, W. E. N. (ms.) 1991 Late Quaternary benthonic foraminiferal stratigraphy of the western UK continental shelf. PhD dissertation, University of Wales: 205 P.Google Scholar
Austin, W. E. N. and Kroon, D. (ms.) Tbe Lateglacial palaeoceanographic evolution of the Hebridean continental shelf, NW Scotland. In Andrews, J. T., Austin, W. E. N. and Bergsten, H. E., eds., The Lateglacial Paleoceanography of the North Atlantic Margins. Geological Society Special Publication. Submitted.Google Scholar
Bard, E. 1988 Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography 3: 635645.CrossRefGoogle Scholar
Bard, E., Amold, M., Mangerud, M., Paterne, M., Labeyrie, L., Duprat, J., Mélières, M. A., Sonstegaard, E., Duplessy, J. C. 1994 The North Atlantic atmospheresea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126: 275287.CrossRefGoogle Scholar
Berger, W. H. and Heath, G. R. 1968 Vertical mixing in pelagic sediments. Journal of Marine Research 26: 134143.Google Scholar
Björck, S., Ingolfsson, O., Haflidason, H., Hallsdottir, M. and Anderson, N. J. 1992 Lake Torfdalsvatn: A high resolution record of the North Atlantic ash zone 1 and the last glacial-interglacial environmental changes in Iceland. Boreas 21: 1522.CrossRefGoogle Scholar
Boyle, E. A and Keigwin, L. 1987 North Atlantic thermohaline circulation during the last 20,000 years linked to high-latitude surface temperature. Nature 330: 3540.CrossRefGoogle Scholar
Broecker, W. S. 1992 Defining the boundaries of the Late-Glacial Isotope episodes. Quaternary Research 38: 135138.CrossRefGoogle Scholar
Fisher, R. V. 1964 Maximum size, median diameter and sorting of tephra. Journal of Geophysical Research 69: 341355.CrossRefGoogle Scholar
Gillespie, R., Hedges, R. E. M. and Humm, M. J. 1986 Routine AMS dating of bone and shell proteins. in Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 451456.CrossRefGoogle Scholar
Gulliksen, S., Possnert, G., Mangerud, J. and Birks, H. (ms.) 1994 AMS 14C dating of the Krakenes Late Weichselian sediments. Paper presented at the 15th International 14C Conference, 15-19 August 1994, Glasgow, Scotland.Google Scholar
Goslar, T., Arnold, M., Bard, E. and Pazdur, M. F. (ms.) 1994 Variations of atmospheric 14C levels around the Late Glacial/Holocene boundary. Paper presented at the 15th International 14C Conference, 15-19 August 1994, Glasgow, Scotland.Google Scholar
Hajdas, I., Ivy, S., Beer, J., Bonani, G., Imboden, D., Lotter, A.F., Sturn, M. and Suter, M. 1993 AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C yr BP. Climate Dynamics 9: 107116.CrossRefGoogle Scholar
Harkness, D. D. 1983 The extent of natural 14C deficiency in the coastal environment of the United Kingdom. in Mook, W. G. and Waterbolk, H. T., eds., Proceedings of the International Symposium on 14C in Archaeology. PACT 8: 351364.Google Scholar
Hunt, J. B., Fannin, N. G. T., Hill, P. G. and Peacock, J. D., in press. The tephrochronology and radiocarbon dating of North Atlantic Late Quaternary sediments: An example from the St Kilda Basin. Geological Society Special Publication.Google Scholar
Johnsen, S. J., Clausen, B., Dansgaard, W., Fuhrer, K, Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B. and Steffenson, J. P. 1992 Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311313.CrossRefGoogle Scholar
Keigwin, L. D., Jones, G. A., Lehman, S. J. and Boyle, E. A. 1991 Deglacial meltwater discharge, North Atlantic deep circulation, and abrupt climatic change. Journal of Geophysical Research 96(9): 1681116826.CrossRefGoogle Scholar
Koc-Karpuz, N., Jansen, E. and Haflidason, H. 1993 Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quaternary Science Reviews 12: 115140.Google Scholar
Kroon, D. and Austin, W. E. N. in press. High resolution marine records of the last glacial/interglacial transition from the Hebridean margin, N.W. Scotland. Proceedings of the Royal Dutch Academy of Science. Google Scholar
Kvamme, T., Mangerud, J., Furnes, H. and Ruddiman, W. 1989 Geochemistry of Pleistocene ash zones in cores from the North Atlantic. Norsk Geologisk Tidsskrift 69: 251272.Google Scholar
Lehman, S. J., Jones, G. A., Keigwin, L. D., Andersen, E. S., Butenko, G. and Ostmo, S.-R. 1991 Initiation of Fennoscandian ice-sheet retreat during the last deglaciation. Nature 349: 513516.CrossRefGoogle Scholar
Lehman, S. J. and Keigwin, L. D. 1992 Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356: 757762.CrossRefGoogle Scholar
Mangerud, J., Andersen, S. T., Berglund, B. E. and Donner, J. J. 1974 Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3: 109128.CrossRefGoogle Scholar
Mangerud, J., Lie, S. E., Furnes, H., Kristiansen, I. L. and Lomo, L. 1984 A Younger Dryas ash bed in western Norway and its possible correlations with tephra in cores from the Norwegian sea and the north Atlantic. Quaternary Research 21: 85104.CrossRefGoogle Scholar
Moore, M. J., McCormac, F. G. and McCormick, F. (ms.) 1994 Investigation of changes in ocean circulation rate in the North Atlantic. Paper presented at the 15th International 14C Conference, 15-19 August 1994, Glasgow, Scotland.Google Scholar
Nielsen, S. H., Heinemeier, J. and Rud, N. 1995 Comparative radiocarbon dating of shells and foraminifera: A systematic investigation. in Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(3): in press.Google Scholar
Peacock, J. D. and Harkness, D. D. 1990 Radiocarbon ages and the full-glacial to Holocene transition in seas adjacent to Scotland and southern Scandinavia: A review. Transactions of the Royal Society of Edinburgh, Earth Sciences 81: 385396.CrossRefGoogle Scholar
Peacock, J. D., Austin, W. E. N., Selby, I., Graham, D. K., Harland, R. and Wilkinson, I. P. 1992 Late Devensian and Flandrian palaeoenvironmental changes on the Scottish continental shelf west of the Outer Hebrides. Journal of Quaternary Science 7: 145161.CrossRefGoogle Scholar
Ruddiman, W. F. and Glover, L. K. 1972 Vertical mixing of ice-rafted volcanic ash in North-Atlantic sediments. Geological Society of America Bulletin 83: 28172836.CrossRefGoogle Scholar
Selby, I. (ms.) 1989 Quaternary geology of the Hebridean continental margin. Ph.D. dissertation, Nottingham University.Google Scholar
Southon, J. R., Nelson, D. E. and Vogel, J. S. 1990 A record of past ocean-atmosphere radiocarbon differences from the Northeast Pacific. Paleoceanography 5(2): 197206.CrossRefGoogle Scholar
Stuiver, M., Pearson, G. W. and Brazunias, T. 1986 Radiocarbon age calibration of marine shells back to 9000 cal yr BP. in Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 9801021.CrossRefGoogle Scholar
Stuiver, M. and Brazunias, T. 1994 Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships. The Holocene 3, 4: 289305.CrossRefGoogle Scholar
Talma, A. S. 1990 Radiocarbon age calibration of marine shells. Quarterly Report, Quaternary Dating Research Unit. CSIR, Pretoria: 10 P.Google Scholar
Walker, G. P. L. 1971 Grain-size characteristics of pyroclastic deposits. Journal of Geology 79: 696714.CrossRefGoogle Scholar
Wohlfarth, B., Björck, S. and Possnert, G. 1995 The Swedish time scale: A potential calibration tool for the radiocarbon time scale during the Late Weichselian. in Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(3): in press.CrossRefGoogle Scholar
Yonge, C. M. and Thompson, T. E. 1976. Living Marine Molluscs. London, Collins: 288 P.Google Scholar