Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T19:02:40.613Z Has data issue: false hasContentIssue false

14C Dating and Stable Carbon Isotopes of Soil Organic Matter in Forest–Savanna Boundary Areas in the Southern Brazilian Amazon Region

Published online by Cambridge University Press:  18 July 2016

L. C. R. Pessenda
Affiliation:
Centro de Energia Nuclear na Agriculture, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
S. E. M. Gouveia
Affiliation:
Centro de Energia Nuclear na Agriculture, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
Ramon Aravena
Affiliation:
Waterloo Center for Groundwater Research, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
B. M. Gomes
Affiliation:
Universidade de Rondônia, Campus de Ji-Parana, Rondônia, Brazil
Rene Boulet
Affiliation:
ORSTOM, Instituto de Geociencias, Universidade de Sao Paulo, 05508-900, SP, Brazil
A. S. Ribeiro
Affiliation:
Instituto de Biologia, Universidade de Sergipe, Aracaju, Sergipe, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study, which was carried out in the southern Brazilian Amazon region (Rondônia state and Humaitá, Southern Amazon state), presents and discusses the significance of carbon isotope data measured in soil profiles collected across natural boundaries of forest to savanna vegetation. The main objective of this study was to evaluate the expansion-regression dynamics of these vegetation units in relation to climate changes during the Holocene. 14C data from charcoal, soil organic matter (SOM) and its component humin fraction indicate that the organic matter in the studied soils is essentially Holocene in origin. 13C data indicate that C3 type plants were the dominant vegetation at all study areas in the early Holocene, and during the entire Holocene, in the forest sites of Central Rondônia state and in the forest site 50 km from the city of Humaitá. 13C data also indicate that C4 plants have influenced significantly the vegetation at the transitional forest and the Cerrado (wooded savanna) sites of Southern Rondônia state and the forest ecosystem located 20 km from the Humaitá city. These typical C4 type isotopic signatures probably reflect a drier climate during the mid-Holocene. The 13C records representing probably the last 3000 yr show an expansion of the forest, due to a climatic improvement, in areas previously occupied by savanna vegetation. These results and other published data for the Amazon region indicate that the areas representing today's forest-savanna boundaries have been determined by significant vegetation changes during the Holocene. The boundary between forest and savanna vegetation seems to be quite sensitive to climatic change and should be the focus of more extensive research to correlate climate and past vegetation dynamics in the Amazon region.

Type
Part 2: Applications
Copyright
Copyright © The American Journal of Science 

References

Absy, M. L. 1980 Dados sobre as mudanças do clima e da vegetação da Amazonia durante o Quaternário. Acta Amazonica 10: 929932.Google Scholar
Absy, M. L. 1982 Quaternary palynological studies in the Amazon Basin. In Prance, G. T., ed., Biological Diversification in the Tropics. New York, Columbia University Press: 6773.Google Scholar
Absy, M. L., Cleef, A. L. M., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Da Silva, M. F., Soubies, F., Suguio, K., Turcq, B. and Van der Hammen, T. 1991 Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de l'Amazonie au cours des 60.000 dernières années. Première comparaison avec d'autres régions tropicales. Compte Rendus de l'Académie des Sciences , 2nd Series, 312:673678.Google Scholar
Absy, M. L. and Van der Hammen, T. 1976 Some paleoecological data from Rondonia, southern part of the Amazon Basin. Acta Amazonica 6(3): 293299.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1989 Carbon isotope dynamics in some tropical soils. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 672679.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1992 The use of natural 14C and 13C in soils for studies on global climate change. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(4): 535540.Google Scholar
Boutton, T. W. 1991 Stable carbon isotopes ratios of natural materials: II Atmospheric, terrestrial, marine and freshwater environments. In Coleman, D. C. and Fry, B., eds., Carbon Isotope Techniques. San Diego, Academic Press: 173185.CrossRefGoogle Scholar
Cerri, C. C., Feller, C., Balesdent, J., Victoria, R. and Plenecassagne, A. 1985 Application du traçage isotopique naturel en 13C, a l'étude de la dynamique de la matière organique dans les sols. Comptes Rendus de l'Académie des Sciences , 2nd Series 300(9): 423426.Google Scholar
Desjardins, T., Carneiro Filho, A., Mariotti, A., Chauvel, A. and Girardin, C. 1996 Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable ratios of soil organic matter. Oecologia 108: 749756.Google Scholar
Desjardins, T., Volkoff, B., Andreux, F. and Cerri, C. C. 1991 Distribution du carbone total et de l'isotope 13C dans des sols ferrallitiques du Brésil. Science du Sol 29: 175187.Google Scholar
Gomes, B. M. 1995 (ms.) Estudo paleoambiental no estado de Rondonia utilizando datação por 14C e razão 13C/12C da matéria orgânica do solo. Master's Thesis, CENA, University of São Paulo: 100 p.Google Scholar
Gouveia, S. E. M. 1996 (ms.) Estudos das alterações de paleovegetações na Amazonia central utilizando a datação radiocarbônica e razão 13C/12C da matéria orgânica do solo. Master's Thesis, CENA, University of Sao Paulo: 75 p.Google Scholar
Haffer, J. 1969 Speciation in Amazoniam forest birds. Science 165: 131137.Google Scholar
Ledru, M. P. 1993 Late Quaternary environmental and climatic changes in Central Brazil. Quaternary Research 39: 9098.CrossRefGoogle Scholar
Liu, K. B. and Colinvaux, P. A. 1988 A 5200-year history of Amazon rain forest. Journal of Biogeography 15: 231248.CrossRefGoogle Scholar
Nadelhoffer, K. J. and Fry, B. 1988 Controls on natural nitrogen-15 and carbon-13 abundance in forest soil organic matter. Soil Science Society of America Journal 52: 16331640.Google Scholar
Pessenda, L. C. R., Aravena, R., Melfi, A. J., Telles, E. C. C., Boulet, R., Valencia, E. P. E. and Tomazello, M. 1996a Carbon isotopes (13C,14C) in soil to evaluate changes during the Holocene in Central Brazil. Radiocarbon 38(2): 191201.Google Scholar
Pessenda, L. C. R. and Camargo, P. B. 1991 Datação radiocarbônica de amostras de interesse arqueológico e geológico por espectrometria de cintilação liquida de baixo nível de radiação de fundo. Química Nova 14(2): 98103.Google Scholar
Pessenda, L. C. R., Gomes, M. B. M., Aravena, R., Ribeiro, A. S., Boulet, R., Gouveia, S. E. M. 1998 The carbon isotope record in soils along a forest-cerrado ecosystem transect and their implications for vegetations changes in the Rondonia state, southwestern Brazilian Amazon region. The Holocene : in press.Google Scholar
Pessenda, L. C. R., Gouveia, S. E. M., Gomes, M. B. M., Aravena, R., Boulet, R. and Ribeiro, A. 1997 Studies of palaeovegetation changes in the central Amazon by carbon isotopes of soil organic matter. In Murphy, P., ed., Proceedings of the International Simposium on Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and Atmosphere. Vienna, IAEA: in press.Google Scholar
Pessenda, L. C. R., Valencia, E. P. E., Camargo, P. B., Telles, E. C. C., Martinelli, L. A., Cerri, C. C., Aravena, R. and Rozanski, K. 1996b Natural radiocarbon measurements in Brazilian soils developed on basic rocks. Radiocarbon 38(2): 203208.Google Scholar
Prance, G. T. 1973 Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon Basin, based on evidence from distribution patterns in Caryocaraceae, Chrysolalanaceae, Dichapetalaceae and Lecythidaceae. Acta Amazonica 3:528.CrossRefGoogle Scholar
Richards, P. W. 1973 The tropical rain forest. Scientific American 229: 5868.CrossRefGoogle Scholar
Saldarriaga, J. G. and West, D. C. 1986 Holocene fires in the northern Amazon basin. Quaternary Research 26: 358366.Google Scholar
Sanaiotti, T. (ms.) 1996 The woody flora and soils of seven Brazilian Amazonian dry savanna areas. PhD.Thesis, University of Stirling, Scotland: 148 p.Google Scholar
Sanches, P. A., Gichuru, M. P. and Katz, L. B. 1982 Organic matter in major soils of the tropical and temperate regions. In Non symbiotic nitrogen fixation and organic matter in the tropics. 12th International Congress of Soil Sciences, New Delhi: 99114.Google Scholar
Schwartz, D., Mariotti, A., Lanfranchi, R. and Guillet, B. 1986 13C/12C ratios of soil organic matter as indicators of ecosystem changes in tropical regions. Geoderma 39: 97103.Google Scholar
Schwabe, G. H. 1969 Towards an ecological characterization of the South American continent. Fittkau, E. J., Illies, J., Klinge, H., Schwabe, G. H. and Sioli, H., eds., Biogeography and Ecology in South America. The Hague, Dr. W. Junk: 1: 113116.CrossRefGoogle Scholar
Servant, M., Maley, J., Turcq, B., Absy, M. L., Brenac, P., Fournier, M. and Ledru, M. P. 1993 Tropical forest changes during the late Quaternary in African and South American lowlands. Global and Planetary Changes 7: 2540.Google Scholar
Sifeddine, A., Bertrand, Ph., Fournier, M., Martin, L., Servant, M., Soubies, F., Suguio, K. and Turcq, B. 1994 La sédimentation organique lacustre en milieu tropical humide (Carajas, Amazonie orientale, Brésil): Relation avec les changements climatique des 60000 dernièrs années. Bulletin de la Sociéte Geologique de France 165(6): 613621.Google Scholar
Soubies, F. 1980 Existence d'une phase sèche en Amazonie brésilienne datée par la présence de charbons dans le sols (6000–3000 ans B.P.). Cahiers ORSTOM, Série Géologie 11(1): 133148.Google Scholar
Stout, J. D., Rafter, T. A. and Throughton, J. H. 1975 The possible significance of isotopic ratios in paleoecology. In Suggate, R. P. and Creewell, M. M. eds., Quaternary Studies. Wellington, Royal Society of New Zealand: 279286.Google Scholar
Throughton, J. H., Stout, J. D. and Rafter, T. 1974 Long term stability of plant communities. Carnegie Institute of Washington Yearbook 73: 838845.Google Scholar
Trumbore, S. E. 1993 Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles 7(2): 275290.CrossRefGoogle Scholar
Trumbore, S. E., Davidson, E. A., de Camargo, P. B., Nepstad, D. C. and Martinelli, L. A. 1995 Below-ground cycling of carbon in forests and pastures of Eastern Amazonia. Global Biogeochemical Cycles 9: 515528.Google Scholar
Valencia, E. P. E. 1993 (ms.) Datação por 14C e razão 13C/12C de solos sob climas tropical e subtropical do Brasil. Master's Thesis. CENA, University of São Paulo: 91 p.Google Scholar
Van der Hammen, T. 1972 Changes in vegetation and climate in the Amazon Basin and surrounding areas during the Pleistocene. Geologic en Mijnbouw 51: 641643.Google Scholar
Van der Hammen, T. 1974 The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1: 326.Google Scholar
Van der Hammen, T. 1982 Paleoecology of tropical South America. In Prance, G. T., ed., Biological Diversification in the Tropics. New York, Columbia University Press: 6066.Google Scholar
Van der Hammen, T. 1991 Palaeoecological background: Neotropics. Climate Change 19: 3747.Google Scholar
Vanzolini, P. E. 1970 Zoologia sistemática, geografia e a origem das especies. Instituto de Geografia São Paulo 3:156.Google Scholar
Volkoff, B. B. and Cerri, C. C. 1988 L'humus des sols du Brésil. Nature et relations avec l'environnement. Cahiers ORSTOM, Série pédologie 24: 8395.Google Scholar