Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T00:32:56.879Z Has data issue: false hasContentIssue false

230Th-234U and 14C Ages Obtained by Mass Spectrometry on Corals

Published online by Cambridge University Press:  18 July 2016

Edouard Bard
Affiliation:
Laboratoires de Géosciences et d'Environnement, Université d'Aix-Marseille III, 13397 Marseille, France Centre des Faibles Radioactivités, CNRS-CEA, 91198 Gif-sur-Yvette, France Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York 10964 USA
Maurice Arnold
Affiliation:
Centre des Faibles Radioactivités, CNRS-CEA, 91198 Gif-sur-Yvette, France
Richard G. Fairbanks
Affiliation:
Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York 10964 USA
Bruno Hamelin
Affiliation:
Laboratoires de Géosciences et d'Environnement, Université d'Aix-Marseille III, 13397 Marseille, France Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York 10964 USA
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1988, Fairbanks conducted a drilling expedition off the south coast of Barbados to recover submerged corals contemporaneous with the last deglaciation. Core recovery was excellent and >30 different samples were dated by conventional β-counting techniques (Fairbanks 1989). At about the same time, we developed, at Lamont, the thermal ionization mass spectrometry (TIMS) technique to obtain precise U-Th ages (Edwards 1988), and to compare them with the 14C estimates measured on the same samples. A surprising result was that the discrepancy between 14C and U-Th ages increased through time to ca. 3000–3500 yr at ca. 15,000 14C BP (Bard et al. 1990a). Because the three youngest samples yielded U-Th ages in agreement with their calibrated 14C ages, we concluded initially that the TIMS U-Th determinations were not only precise, but also accurate, and that the 14C vs. U-Th data set could be used for a first-order 14C calibration.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. and Woodward, F. I. 1990 Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature 348: 711714.CrossRefGoogle Scholar
Ammann, B. and Lotter, A. F. 1989 Late-Glacial radiocarbon and palynostratigraphy on the Swiss Plateau. Boreas 18: 109126.Google Scholar
Barbetti, M. and Flude, K. 1979 Geomagnetic variation during the late Pleistocene period and changes in the radiocarbon timescale. Nature 279: 202205.Google Scholar
Bard, E., 1988 Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography 3: 635645.Google Scholar
Bard, E., Arnold, M., Maurice, P., Duprat, J., Moyes, J. and Duplessy, J.-C. 1987 Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328: 791794.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990a Calibration of 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405410.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Fairbanks, R. G., Zindler, A., Arnold, M. and Mathieu, G. 1990b U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C time scale beyond 9000 years BP. in Yiou, F. and Raisbeck, G., eds., Proceedings of the 5th International Conference on AMS. Nuclear Instruments and Methods B52 461468.CrossRefGoogle Scholar
Becker, B., Kromer, B. and Trimborn, P. 1991 A stable isotope tree-ring time scale of the Late Glacial/Holocene boundary. Nature 353: 647649.Google Scholar
Bell, W. T. 1991 Thermoluminescence dates for the Lake Mungo aboriginal fireplaces and the implication for the radiocarbon time scale. Archaeometry 33: 4350.Google Scholar
Berner, W., Oeschger, H. and Stauffer, B. 1980 Information on the CO2 cycle from ice core studies. in Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 227235.Google Scholar
Broecker, W. S. 1992 Defining the boundaries of the late glacial isotope episodes. Quaternary Research 38: 135138.CrossRefGoogle Scholar
Broecker, W. S., Peng, T. H., Trumbore, S., Bonani, G. and Wölfli, W. 1990 The distribution of radiocarbon in the glacial ocean. Global Biogeochemical Cycles 4: 103117.Google Scholar
Delmas, R. J., Ascencio, J. M. and Legrand, M. 1980 Polar ice evidence that atmospheric CO2 20,000yr BP was 50% of present. Nature 284: 155157.CrossRefGoogle Scholar
Druffel, E. and Linick, T. 1978 Radiocarbon in annual coral rings of Florida. Geophysical Research Letters 5: 913916.Google Scholar
Druffel, E. and Suess, H. 1983 On the radiocarbon record in banded corals: Exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88: 12711280.Google Scholar
Edwards, R. L. (ms.) 1988 High precision thorium-230 ages of corals and the timing of sea level fluctuations in the late Quaternary. Ph.D. Thesis. California Institute of Technology.Google Scholar
Fairbanks, R. G. 1989 A 17,000-year glacio-eustatic sea level record influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342: 637647.CrossRefGoogle Scholar
Fairbanks, R. G. 1990 The age and origin of the “Younger Dryas climate event” in Greenland ice cores. Paleoceanography 5: 937948.CrossRefGoogle Scholar
Gillot, P. Y. and Cornette, Y. 1986 The Cassignol technique for potassium-argon dating, precision and accuracy examples from the late Pleistocene to recent volcanics from southern Italy. Chemical Geology 59: 205222.Google Scholar
Goslar, T., Kuc, T. and Pazdur, M. F., Ralska-Jasiewiczowa, M., Rozanski, K., Szeroczynska, K., Walanus, A., Wicik, B., Wieckowski, K., Arnold, M., Bard, E. 1992 Possibilities of reconstruction of radiocarbon level changes during the late glacial by laminated sequence of the Gosciaz Lake. in Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 826832.CrossRefGoogle Scholar
Kromer, B. and Becker, B. 1992 German oak and pine 14C calibration, 7200 BC to 9400BC. Radiocarbon, this issue.CrossRefGoogle Scholar
Mazaud, A., Laj, C., Bard, E., Arnold, M. and Tric, E. 1991 Geomagnetic field control of 14C production over the last 80 ky: Implications for the radiocarbon time-scale. Geophysical Research Letters 18: 18851888.Google Scholar
McElhinny, M. W. and Senanayake, W. E. 1982 Variations in the geomagnetic dipole I the past 50,000 years. Journal of Geomagnetism and Geoelectricity 34: 3951.CrossRefGoogle Scholar
Moore, J., Normak, W. R. and Szabo, B. 1990 Reef growth and volcanism on the submarine southwest rift zone of Mauna Loa, Hawaii. Bulletin of Volcanology 52: 375380.CrossRefGoogle Scholar
Nozaki, Y., Rye, D. M., Turekian, K. K. and Dodge, R. E. 1978 A 200 year record of carbon-13 and carbon-14 variations in a Bermuda corals. Geophysical Research Letters 5: 825828.Google Scholar
Rozanski, K., Goslar, T., Dulinski, M., Kuc, T., Pazdur, M. F. and Walanus, A. 1992 The Late Glacial-Holocene transition in laminated sediments of Lake Gosciaz (central Poland). in Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I-2. Heidelberg, Springer-Verlag: 6980.Google Scholar
Salis, B. and Bonhommet, N. 1992 Variation of geomagnetic intensity from 8-60 Ky BP, Massif Central France. in Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I-2. Heidelberg, Springer-Verlag: 155162.Google Scholar
Shackleton, N. J., Duplessy, J. C., Arnold, M., Maurice, P., Hall, M. A. and Cartlidge, J. 1988 Radiocarbon age of the last glacial deep water. Nature 335: 708711.CrossRefGoogle Scholar
Shen, G. T., Campbell, T. M., Dunbar, R. B., Wellington, G. M., Colgan, M. W. and Glynn, P. W. 1991 Paleochemistry of manganese in corals from the Galapagos Islands. Coral Reefs 10: 91100.Google Scholar
Stuiver, M., Brazunias, T. F., Becker, B. and Kromer, B. 1991 Climatic, solar, oceanic and geomagnetic influences on Late-Glacial and Holocene 14C/12C changes. Quaternary Research 35: 124.CrossRefGoogle Scholar
Valladas, H. and Valladas, G. 1987 Thermoluminescence dating of burnt flint and quartz: Comparative results. Archaeometry 29: 214220.Google Scholar
Veeh, H. H. and Veevers, J. J. 1970 Sea level at -175 m off the Great Barrier Reef 13,600 to 17,000 years ago. Nature 226: 536537.Google Scholar
Vogel, J. C. 1983 14C variations during the Upper Pleistocene. in Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 25(2): 213218.Google Scholar