Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T13:19:03.404Z Has data issue: false hasContentIssue false

The 1953–1965 rise in Atmospheric bomb 14C in Central Norway

Published online by Cambridge University Press:  09 September 2019

Helene Svarva*
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Pieter Grootes
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Martin Seiler
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Sølvi Stene
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Terje Thun
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Einar Værnes
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Marie-Josée Nadeau
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
*
*Corresponding author. Email: helene.svarva@ntnu.no.

Abstract

Sub-annual measurements, eight increments per year, of cellulose in a Scots pine tree growing in central Norway are presented as a proxy for tropospheric 14CO2 at biweekly to monthly resolution. The results are validated by comparison to direct atmospheric measurements in the years 1959–1965, and a new dataset is obtained for 1953–1958. In this period, our cellulose measurements deviate from the Bomb 13 NH1 calibration curve, which is derived from single-year measurements of tree rings. This is due to seasonal cycles in tropospheric radiocarbon (14C) concentrations, caused by the first series of atmospheric nuclear weapons tests.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Andersson, S-O. 1953. Om tidpunkten för den årliga diametertillväxtens avslutande hos tall och gran. Meddelanden från Statens Skogsforskningsinstitut 43(5): 27 p.Google Scholar
Bayliss, A, Marshall, P, Tyers, C, Bronk Ramsey, C, Cook, G, Freeman, SPHT, Griffiths, S. 2017. Informing conservation: towards 14C wiggle-matching of short tree-ring sequences from medieval buildings in England. Radiocarbon 59(3):9851007.CrossRefGoogle Scholar
Bergkvist, N-O, Ferm, R. 2000. Nuclear explosions 1945–1998. FAO-Stockholm International Peace Research Institute. User Report. Stockholm. 42 p.Google Scholar
Broecker, WS, Walton, A. 1959. Radiocarbon from nuclear tests. Science 130(3371):309314.10.1126/science.130.3371.309CrossRefGoogle ScholarPubMed
Broecker, WS, Peng, T-H, Engh, R. 1980. Modeling the carbon system. Radiocarbon 22(3):565598.CrossRefGoogle Scholar
Cain, WF, Griffin, S, Druffel-Rodriguez, KC, Druffel, ERM. 2018. Uptake of carbon for cellulose production in a white oak from western Oregon, USA. Radiocarbon 60(1):151158.CrossRefGoogle Scholar
Dee, MW, Pope, BJS. 2016. Anchoring historical sequences using a new source of astro-chronological tie-points. Proceedings of the Royal Society A 472:20160263. doi:10.1098/rspa.2016.0263.CrossRefGoogle ScholarPubMed
Deslauriers, A, Morin, H, Urbinati, C, Carrer, M. 2003. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forest of Québec (Canada). Trees 17:477484.CrossRefGoogle Scholar
Druffel, E, Suess, HE. 1983. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88(C2):12711280.CrossRefGoogle Scholar
Feely, HW, Seitz, H, Lagomarsino, RJ, Biscaye, PE. 1966. Transport and fallout of stratospheric radioactive debris. Tellus 18(2):316328.CrossRefGoogle Scholar
Ford, ED, Robards, AW, Piney, MD. 1978. Influence of environmental factors in cell production and differentiation on the early wood of Picea sitchensis . Annals of Botany 42(3):683692.CrossRefGoogle Scholar
Grootes, PM, Farwell, GW, Schmidt, FH, Leach, DD, Stuiver, M. 1989. Rapid response of tree cellulose radiocarbon content to changes in atmospheric 14CO2 concentration. Tellus 41B: 134–48.CrossRefGoogle Scholar
Hettonen, HM, Mäkinen, H, Nöjd, P. 2009. Seasonal dynamics of the radial increment of Scots pine and Norway spruce in the southern and middle boreal zones of Finland. Canadian Journal of Forest Research 39:606618.CrossRefGoogle Scholar
Hua, Q, Barbetti, M. 2007. Influence of atmospheric circulation on regional 14CO2 differences. Journal of Geophysical Research 112:D19102, doi:10.1029/ 2006JD007898.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.CrossRefGoogle Scholar
Keeling, CF. 1979. The Suess effect: 13carbon-14carbon interrelations. Environment International 2:229300.CrossRefGoogle Scholar
Keeling, RF, Piper, SC, Bollenbacher, AF, Walker, SJ. 2010. Monthly atmospheric 13C/12C isotopic ratios for 11 SIO stations. Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA. http://cdiac.ess-dive.lbl.gov/trends/co2/iso-sio/iso-sio.html.Google Scholar
Le Clercq, M, van der Plicht, J, Gröning, M. 1997. New 14C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295297.CrossRefGoogle Scholar
Levin, I, Hammer, S, Eichelmann, E, Vogel, FR. 2011. Verification of greenhouse gas emission reductions: the prospect of atmospheric monitoring in polluted areas. Philosophical Transactions of the Royal Society A 369:19061924.CrossRefGoogle ScholarPubMed
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):12611272.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Münnich, M, Berdau, D, Vogel, JC, Münnich, KO. 1985. 25 years of tropospheric 14C observations in central Europe. Radiocarbon 27(1):119.CrossRefGoogle Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, P, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus 62B:2646.CrossRefGoogle Scholar
McDonald, L, Chivall, D, Miles, D, Bronk Ramsey, C. 2018. Seasonal variations in the 14C content of tree rings: influences on radiocarbon calibration and single-year curve construction. Radiocarbon 61(1):185194.CrossRefGoogle Scholar
Mäkinen, H, Seo, J-W, Nöjd, P, Schmitt, U, Jalkanen, R. 2008. Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. European Journal of Forest Research 127:235245.CrossRefGoogle Scholar
Mann, WB. 1983. An international reference material for radiocarbon dating. Radiocarbon 25(2):519527.CrossRefGoogle Scholar
Manning, MR, Lowe, DC, Melhuish, WH, Sparks, RJ, Wallace, G, Brenninkmeijer, CAM, McGill, RC. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1):3758.CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748.CrossRefGoogle ScholarPubMed
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486:240–42.CrossRefGoogle Scholar
Mook, WG, Koopmans, M, Carter, AF, Keeling, CF. 1983. Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide 1. Results from land stations. Journal of Geophysical Research 88(C15):10915–33.CrossRefGoogle Scholar
Nadeau, M-J, Grootes, PM. 2013. Calculation of the compounded uncertainty of 14C AMS measurements. Nuclear Instruments and Methods in Physics Research B 294:420425.CrossRefGoogle Scholar
Nadeau, M-J, Værnes, E, Svarva, HL, Larsen, E, Gulliksen, S, Klein, M, Mous, DJW. 2015. Status of the “new” AMS facility in Trondheim. Nuclear Instruments and Methods in Physics Research 361B:149155.CrossRefGoogle Scholar
Naegler, T, Levin, I. 2009. Biosphere-atmosphere gross carbon exchange flux and the δ13CO2 and Δ14CO2 disequilibria constrained by the biospheric excess radiocarbon inventory. Journal of Geophysical Research 114: D17303, doi: 10.1029/2008JD011116.CrossRefGoogle Scholar
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(2–3):13581370.CrossRefGoogle Scholar
Nydal, R. 1966. Variation in C14 concentration in the atmosphere during the last several years. Tellus 18(2): 271279.CrossRefGoogle Scholar
Nydal, R, Løvseth, K. 1965. Distribution of radiocarbon from nuclear tests. Nature 206(4988): 10291031.CrossRefGoogle ScholarPubMed
Nydal, R, Løvseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6):36213642.CrossRefGoogle Scholar
Nydal, R. 1968. Further investigation on the transfer of radiocarbon in nature. Journal of Geophysical Research 73(12):36173635.CrossRefGoogle Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27(2):168192.CrossRefGoogle Scholar
Ohneiser, A. 2006. Entwicklung einer automatischen CO2-Reduktionsanlage zur Probenvorbereitung am AMS Radiokarbonlabor Erlangen. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg.Google Scholar
Olsson, IU, Karlén, I. 1965. Uppsala radiocarbon measurements VI. Radiocarbon 7:331335.10.1017/S0033822200037309CrossRefGoogle Scholar
Olsson, IU, Klasson, M. 1970. Uppsala radiocarbon measurements X. Radiocarbon 12(1):281284.CrossRefGoogle Scholar
Olsson, I, Possnert, G. 1992. 14C activity in different sections and chemical fractions of oak tree rings, AD 1938–1981. Radiocarbon 34(3):757767.CrossRefGoogle Scholar
Pearson, CL, Brewer, PW, Brown, D, Heaton, TJ, Hodgins, GWL, Jull, AJT, Lange, T, Salzer, MW. 2018. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances 4:eaar8241.CrossRefGoogle ScholarPubMed
Rafter, TA, Fergusson, GJ. 1957. “Atom bomb effect”—Recent increase of carbon-14 content of the atmosphere and biosphere. Science 126(3273):557558.CrossRefGoogle ScholarPubMed
Rakowski, A, Kuc, T, Nakamura, T, Pazdur, A. 2004. Radiocarbon concentration in the atmosphere and modern tree rings in the Kraków area, southern Poland. Radiocarbon 46(2):911916.CrossRefGoogle Scholar
Randerson, JT, Enting, IG, Schuur, EAG, Caldeira, K, Fung, IY. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Geochemical Cycles 16(4). doi: 10.1029/2002GB001876.CrossRefGoogle Scholar
Rossi, S, Deslauriers, A, Anfodillo, T, Carraro, V. 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:112.CrossRefGoogle ScholarPubMed
Rossi, S, Deslauriers, A, Anfodillo, T, Morin, H, Saracino, A, Motta, R, Borghetti, M. 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist 170:301310.CrossRefGoogle ScholarPubMed
Schmitt, U, Jalkanen, R, Eckstein, D. 2004. Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fennica 38(2):167178.Google Scholar
Scott, EM. 2003. Section 2: the results. Radiocarbon 45(2):151157.Google Scholar
Seiler, M, Grootes, PM, Haarsaker, J, Lélu, S, Rzadecka-Juga, I, Stene, S, Svarva, HL, Thun, T, Værnes, E, Nadeau, M-J. 2019. Status report of the Trondheim AMS radiocarbon laboratory. Radiocarbon 61(6). This issue.CrossRefGoogle Scholar
Sigl, M, Winstrup, M, McConnell, JR, Welten, KC, Plunkett, G, Ludlow, F, Büntgen, U, Caffee, M, Chellman, N, Dahl-Jensen, D, Fischer, H, Kipfstuhl, S, Kostick, C, Maselli, OJ, Mekhaldi, F, Mulvaney, R, Muscheler, R, Pasteris, DR, Pilcher, JR, Salzer, M, Schüpbach, S, Steffensen, JP, Vinther, BM, Woodruff, TE. 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523:543549.CrossRefGoogle ScholarPubMed
Stenberg, A, Olsson, IU. 1967. Uppsala radiocarbon measurements VIII. Radiocarbon 9:471476.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Tauber, H. 1960. Post-bomb rise in radiocarbon activity in Denmark. Science 131(3404):921922.CrossRefGoogle ScholarPubMed
Vaganov, EA, Hughes, MK, Kirdyanov, AV, Schweingruber, FH, Silkin, PP. 1999. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149151.CrossRefGoogle Scholar
Wacker, L, Güttler, D, Goll, J, Hurni, JP, Synal, H-A, Walti, N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56(2):573579.10.2458/56.17634CrossRefGoogle Scholar
Supplementary material: File

Svarva et al. supplementary material

Table S1

Download Svarva et al. supplementary material(File)
File 31.3 KB
Supplementary material: File

Svarva et al. supplementary material

Figures S1-S2

Download Svarva et al. supplementary material(File)
File 302.5 KB