Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T06:43:55.220Z Has data issue: false hasContentIssue false

Dissolved inorganic Radiocarbon content of the Western Coral sea: Implications for Intermediate and Deep Water Circulation

Published online by Cambridge University Press:  21 November 2019

Aymeric PM Servettaz*
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement (IPSL/CEA-CNRS-UVSQ UMR 8212), CEA Saclay, F-91190 Gif-sur-Yvette, France Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
Yusuke Yokoyama
Affiliation:
Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Shoko Hirabayashi
Affiliation:
Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Markus Kienast
Affiliation:
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada
Yosuke Miyairi
Affiliation:
Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
Mahyar Mohtadi
Affiliation:
MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
*
*Corresponding author. Email: aymeric.servettaz@lsce.ipsl.fr.

Abstract

The South Pacific Ocean contributes to the global carbon cycle by exchanging CO2 between the atmosphere and intermediate to deep water masses. The path of the Antarctic Intermediate Water (AAIW) in the South Pacific gyre has been inferred from salinity, oxygen, and nutrient measurements, but radiocarbon (14C) measurements—a direct tracer of the carbon cycle—remain sparse. Here, we present the first radiocarbon profiles in the western Coral Sea and compare our measurements with South Pacific stations from GLODAPv2, a database of ocean hydrochemistry. Surface and subsurface waters in the Coral Sea cannot be attributed to a single source based on their Δ14C signatures, and we observe a penetration of bomb-produced 14C. AAIW in the western Coral Sea shows Δ14C values comparable to those in the South Pacific gyre, consistent with circulation of AAIW in the lower part of the southern equatorial current. The deep waters of the western Coral Sea have significantly higher 14C than the South Pacific at the same isopycnal, consistent with a northward intrusion of Circumpolar Deep Water from the Tasman Sea, along with a westward influx of deep waters from the Central Pacific. In accordance with silicate concentrations published previously, this shows the dual origin of deep waters in the Coral Sea.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Anderson, RF, Ali, S, Bradtmiller, LI, Nielsen, SHH, Fleisher, MQ, Anderson, BE, Burckle, LH. 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 . Science 323(5920):14431448. doi:10.1126/science.1167441.CrossRefGoogle ScholarPubMed
Bostock, HC, Opdyke, BN, Gagan, MK, Fifield, LK. 2004. Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation: deglaciation in the southwest Pacific. Paleoceanography 19(4). doi:10.1029/2004PA001047.CrossRefGoogle Scholar
Brewer, PG. 1978. Direct observation of the oceanic CO2 increase. Geophys Res Lett. 5(12):9971000. doi:10.1029/GL005i012p00997.CrossRefGoogle Scholar
Broecker, WS, Peng, T-H, Ostlund, G, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. J Geophys. Res. 90(C4):6953. doi:10.1029/JC090iC04p06953.CrossRefGoogle Scholar
CLIVAR Scientific Steering Group, & World Climate Research Programme. 1995. CLIVAR, a study of climate variability and predictability: science plan. Vol. 89. World Climate Research Programme.Google Scholar
Fukasawa, M, Kawano, T, Murata, A, Uchida, H, Doi, T. 2013. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 2007-10-08 to 2007-12-26 (NODC Accession 0108123). Version 2.2. National Oceanographic Data Center, NOAA. Dataset. doi:10.3334/CDIAC/OTG.CLIVAR_P14_2007.CrossRefGoogle Scholar
Ganachaud, A, Cravatte, S, Melet, A, Schiller, A, Holbrook, NJ, Sloyan, BM, Widlansky, MJ, Bowen, M, Verron, J, Wiles, P, et al. 2014. The Southwest Pacific Ocean circulation and climate experiment (SPICE). J Geophys Res Oceans. 119(11):76607686. doi:10.1002/2013JC009678.CrossRefGoogle Scholar
Gasparin, F, Maes, C, Sudre, J, Garcon, V, Ganachaud, A. 2014. Water mass analysis of the Coral Sea through an Optimum Multiparameter method. J Geophys Res Oceans 119(10):72297244. doi:10.1002/2014JC010246.CrossRefGoogle Scholar
Gourdeau, L, Kessler, WS, Davis, RE, Sherman, J, Maes, C, Kestenare, E. 2008. Zonal Jets Entering the Coral Sea. J Phys. Oceanogr. 38(3):715725. doi:10.1175/2007JPO3780.1.CrossRefGoogle Scholar
Graven, HD, Gruber, N, Key, R, Khatiwala, S, Giraud, X. 2012. Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake: CHANGING CONTROLS ON OCEANIC 14C. J. Geophys. Res. 117(C10):n/an/a. doi:10.1029/2012JC008074.Google Scholar
Hartin, CA, Fine, RA, Sloyan, BM, Talley, LD, Chereskin, TK, Happell, J. 2011. Formation rates of Subantarctic mode water and Antarctic intermediate water within the South Pacific. Deep Sea Research Part I: Oceanographic Research Papers 58(5):524534. doi:10.1016/j.dsr.2011.02.010.CrossRefGoogle Scholar
Hesshaimer, V, Heimann, M, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370(6486):201203. doi:10.1038/370201a0.CrossRefGoogle Scholar
Jackett, DR, Mcdougall, TJ. 1997. A neutral density variable for the world’s oceans. Journal of Physical Oceanography 27:27.2.0.CO;2>CrossRefGoogle Scholar
Jenkins, WJ, Elder, KL, McNichol, AP, Reden, K von. 2010. The Passage of the Bomb Radiocarbon Pulse into the Pacific Ocean. Radiocarbon. 52(3):11821190. doi:10.1017/S0033822200046257.CrossRefGoogle Scholar
Johnson, KM, Haines, M, Key, RM, Neill, C, Tilbrook, B, Wilke, R, Wallace, DWR. 2013. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KNORR in the South Pacific Ocean and Tasman Sea from 1992-05-02 to 1992-07-30 (NODC Accession 0115018). Version 1.1. National Oceanographic Data Center, NOAA. doi:10.3334/CDIAC/OTG.NDP077.CrossRefGoogle Scholar
Keigwin, LD. 1987. North Pacific deep water formation during the latest glaciation. Nature 330(6146):362. doi:10.1038/330362a0.CrossRefGoogle Scholar
Kessler, WS, Cravatte, S. 2013. Mean circulation of the Coral Sea. J. Geophys. Res. Oceans 118(12):63856410. doi:10.1002/2013JC009117.CrossRefGoogle Scholar
Key, RM. 1996. WOCE Pacific Ocean Radiocarbon Program. Radiocarbon 38(3):415423. doi:10.1017/S003382220003006X.CrossRefGoogle Scholar
Key, RM, Quay, PD, Schlosser, P, McNichol, AP, Reden, K von, Schneider, RJ, Elder, KL, Stuiver, M, Östlund, HG. 2002. Woce Radiocarbon IV: Pacific Ocean results; P10, P13N, P14C, P18, P19 & S4P. Radiocarbon 44(1):239392. doi:10.1017/S0033822200064845.CrossRefGoogle Scholar
Kumamoto, Y, Murata, A, Kawano, T, Watanabe, S, Fukasawa, M. 2013. Decadal changes in bomb-produced radiocarbon in the pacific ocean from the 1990s to 2000s. Radiocarbon 55(3):16411650. doi:10.1017/S0033822200048554.CrossRefGoogle Scholar
Kumamoto, Y, Murata, A, Watanabe, S, Fukasawa, M. 2011. Temporal and spatial variations in bomb-produced radiocarbon along BEAGLE2003 lines—Revisits of WHP P06, A10, and I03/I04 in the Southern Hemisphere Oceans. Progress in Oceanography 89(1):4960. doi:10.1016/j.pocean.2010.12.007.CrossRefGoogle Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980. doi:10.1017/S0033822200053066.CrossRefGoogle Scholar
Lorius, C, Barkov, NI, Jouzel, J, Korotkevich, YS, Kotlyakov, VM, Raynaud, D. 1988. Antarctic ice core: CO2 and climatic change over the last climatic cycle. Eos Trans AGU 69(26):681. doi:10.1029/88EO00230.CrossRefGoogle Scholar
Macdonald, AM, Mecking, S, Robbins, PE, Toole, JM, Johnson, GC, Talley, L, Cook, M, Wijffels, SE. 2009. The WOCE-era 3-D Pacific Ocean circulation and heat budget. Progress in Oceanography 82(4):281325. doi:10.1016/j.pocean.2009.08.002.CrossRefGoogle Scholar
Maes, C, Gourdeau, L, Couvelard, X, Ganachaud, A. 2007. What are the origins of the Antarctic Intermediate Waters transported by the North Caledonian Jet? Geophysical Research Letters 34(21). doi:10.1029/2007GL031546.CrossRefGoogle Scholar
Matsumoto, K. 2007. Radiocarbon-based circulation age of the world oceans. Journal of Geophysical Research: Oceans 112(C9). doi:10.1029/2007JC004095.CrossRefGoogle Scholar
Millero, FJ, Poisson, A. 1981. International one-atmosphere equation of state of seawater. Deep Sea Research Part A, Oceanographic Research Papers 28(6):625629. doi:10.1016/0198-0149(81)90122-9.CrossRefGoogle Scholar
Mohtadi, M, Beaman, RJ, Boehnert, S, Daumann, M, Floren, VM, Gould, JLA, Hirabayashi, S, Hollstein, M, Kienast, M, Lückge, A, et al. 2017. R/V SONNE Cruise Report SO256, TACTEAC, Temperature And Circulation History of The East Australian Current, Auckland (New Zealand)—Darwin (Australia), 17 April–09 May 2017. Berichte, MARUM—Zentrum für Marine Umweltwissenschaften, Fachbereich Geowissenschaften, Universität Bremen. p. 181.Google Scholar
Okazaki, Y, Timmermann, A, Menviel, L, Harada, N, Abe-Ouchi, A, Chikamoto, MO, Mouchet, A, Asahi, H. 2010. Deepwater formation in the North Pacific during the last glacial termination. Science 329(5988):200204. doi:10.1126/science.1190612.CrossRefGoogle ScholarPubMed
Olsen, A, Key, RM, van Heuven, S, Lauvset, SK, Velo, A, Lin, X, Schirnick, C, Kozyr, A, Tanhua, T, Hoppema, M, et al. 2016. The Global Ocean Data Analysis Project version 2 (GLODAPv2)—an internally consistent data product for the world ocean. Earth System Science Data (Online) 8(2). doi:10.5194/essd-8-297-2016.CrossRefGoogle Scholar
Orsi, AH, Smethie, WM, Bullister, JL. 2002. On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. Journal of Geophysical Research: Oceans 107(C8):31–131–14. doi:10.1029/2001JC000976.CrossRefGoogle Scholar
Rae, JWB, Sarnthein, M, Foster, GL, Ridgwell, A, Grootes, PM, Elliott, T. 2014. Deep water formation in the North Pacific and deglacial CO2 rise: N Pacific deep water and deglacial CO2 . Paleoceanography 29(6):645667. doi:10.1002/2013PA002570.CrossRefGoogle Scholar
Roemmich, D, Warner, MJ, Key, RM, Jenkins, WJ, Bingler, LS, Cornuelle, B. 2014. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KNORR in the South Pacific Ocean from 1992-09-01 to 1992-09-15 (NODC Accession 0115700). Version 1.1. National Oceanographic Data Center, NOAA. Dataset. doi:10.3334/CDIAC/OTG.316N138_7.CrossRefGoogle Scholar
Rotschi, H, Lemasson, L. 1967. Oceanography of the Coral and Tasman Seas. In: Barnes, H, editor. Oceanography and marine biology: An annual review. London: Aberdeen University Press/Allen & Unwin. p. 49.Google Scholar
Sabine, CL, Feely, RA, Gruber, N, Key, RM, Lee, K, Bullister, JL, Wanninkhof, R, Wong, CS, Wallace, DWR, Tilbrook, B, et al. 2004. The Oceanic Sink for Anthropogenic CO2 . Science 305(5682):367371. doi:10.1126/science.1097403.CrossRefGoogle ScholarPubMed
Schneider, W, Fukasawa, M, Uchida, H, Kawano, T, Kaneko, I, Fuenzalida, R. 2005. Observed property changes in eastern South Pacific Antarctic Intermediate Water. Geophysical Research Letters 32(14). doi:10.1029/2005GL022801.CrossRefGoogle Scholar
Skinner, LC, Fallon, S, Waelbroeck, C, Michel, E, Barker, S. 2010. Ventilation of the Deep Southern Ocean and deglacial CO2 rise. Science 328(5982):11471151. doi:10.1126/science.1183627.CrossRefGoogle ScholarPubMed
Sloyan, BM, Rintoul, SR. 2001. Circulation, renewal, and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr. 31(4):10051030. doi:10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Sokolov, S, Rintoul, S. 2000. Circulation and water masses of the southwest Pacific: WOCE Section P11, Papua New Guinea to Tasmania. Journal of Marine Research 58(2):223268. doi:10.1357/002224000321511151.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: Reporting of 14C data. Radiocarbon 19(3):355363. doi:10.1017/S0033822200003672.CrossRefGoogle Scholar
Sundquist, ET. 1993. The global carbon dioxide budget. Science 259(5097):934941.CrossRefGoogle Scholar
Sweeney, C, Gloor, E, Jacobson, AR, Key, RM, McKinley, G, Sarmiento, JL, Wanninkhof, R. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21(2). doi:10.1029/2006GB002784 CrossRefGoogle Scholar
Tilbrook, B, Rintoul, SR. 2013. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Aurora Australis in the Indian Ocean and South Pacific Ocean from 1996-08-22 to 1996-09-21 (NODC Accession 0113761). Version 1.1. National Oceanographic Data Center, NOAA. doi:10.3334/CDIAC/OTG.CARINA_09AR19960822CrossRefGoogle Scholar
Uchida, H, Fukasawa, M, Murata, A. 2013a. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using alkalinity titrator, CTD and other instruments from MIRAI in the South Pacific Ocean and Tasman Sea from 2003-08-03 to 2003-10-16 (NODC Accession 0108122). Version 2.2. National Oceanographic Data Center, NOAA. Dataset. https://accession.nodc.noaa.gov/0108122.Google Scholar
Uchida, H, Murata, A, Doi, T. 2013b. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from the MIRAI in the Coral Sea, North Pacific Ocean and others from 2009-04-10 to 2009-07-03 (NODC Accession 0108084). Version 1.1. National Oceanographic Data Center, NOAA.Google Scholar
Volk, T, Hoffert, MI. 2013. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: The carbon cycle and atmospheric CO2: Natural variations Archean to present. American Geophysical Union (AGU). p. 99110.CrossRefGoogle Scholar
Wanninkhof, R, Millero, FJ, Swift, JH, Carlson, CA, McNichol, A, Key, RM, Macdonald, AM, Curry, R, Warner, MJ, Fine, RA. 2013. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MELVILLE in the South Pacific Ocean and Tasman Sea from 2009-11-21 to 2010-02-11 (NODC Accession 0109920). Version 2.2. National Oceanographic Data Center, NOAA. Dataset. doi:10.3334/CDIAC/OTG.CLIVAR_P06_2009CrossRefGoogle Scholar
Webb, DJ. 2000. Evidence for shallow zonal jets in the south equatorial current region of the Southwest Pacific. J Phys. Oceanogr. 30(4):706720. doi:10.1175/1520-0485(2000)030<0706:EFSZJI>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Wyrtki, K. 1960. The surface circulation in the Coral and Tasman seas. Division of Fisheries and Oceanography Technical Paper No. 8. Melbourne: CSIRO. 44 p.Google Scholar
Yamane, M, Yokoyama, Y, Hirabayashi, S, Miyairi, Y, Ohkouchi, N, Aze, T. 2019 Jan 30. Small- to ultra-small-scale radiocarbon measurements using newly installed single-stage AMS at the University of Tokyo. Nuclear Instruments and Methods in Physics Research B. doi:10.1016/j.nimb.2019.01.035.CrossRefGoogle Scholar
Yokoyama, Y, Koizumi, M, Matsuzaki, H, Miyairi, Y, Ohkouchi, N. 2010. Developing ultra small-scale radiocarbon sample measurement at the University of Tokyo. Radiocarbon 52(2):310318. doi:10.1017/S0033822200045355.CrossRefGoogle Scholar
Yokoyama, Y, Miyairi, Y, Aze, T, Yamane, M, Sawada, C, Ando, Y, de Natris, M, Hirabayashi, S, Ishiwa, T, Sato, N, et al. 2019. A single stage accelerator mass spectrometry at the Atmosphere and Ocean Research Institute, the University of Tokyo. Nuclear Instruments and Methods in Physics Research B. doi:10.1016/j.nimb.2019.01.055.CrossRefGoogle Scholar
Yokoyama, Y, Miyairi, Y, Matsuzaki, H, Tsunomori, F. 2007. Relation between acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation. Nuclear Instruments and Methods in Physics Research B 259(1):330334. doi:10.1016/j.nimb.2007.01.176.CrossRefGoogle Scholar
Supplementary material: File

Servettaz et al. supplementary material

Servettaz et al. supplementary material

Download Servettaz et al. supplementary material(File)
File 590.6 KB