Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T01:09:02.920Z Has data issue: false hasContentIssue false

RADIOCARBON DATING OF ARCHAEOLOGICAL MATERIAL RECOVERED FROM THE BASIN OF MEXICO

Published online by Cambridge University Press:  09 March 2021

Francisco Antonio Balcorta Yépez
Affiliation:
Dirección de Salvamento Arqueológico, INAH, Córdoba 45, Col. Roma, 06700, CDMX, México
Montserrat Alavez Ortúzar
Affiliation:
Dirección de Salvamento Arqueológico, INAH, Córdoba 45, Col. Roma, 06700, CDMX, México
Zulema Berenice Flores Montes de Oca
Affiliation:
Dirección de Salvamento Arqueológico, INAH, Córdoba 45, Col. Roma, 06700, CDMX, México
Miguel Ángel Martínez-Carrillo
Affiliation:
Facultad de Ciencias. Universidad Nacional Autónoma de México. Circuito Exterior S/N, 04510 CDMX, México
Corina Solís*
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, 04510 CDMX, México
María Rodríguez-Ceja
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, 04510 CDMX, México
María Esther Ortiz
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, 04510 CDMX, México
*
*Corresponding author. Email: corina@fisica.unam.mx.

Abstract

The Mexico City Basin has had exceptional plant and animal diversity since ancient times due to its varied orography and benign climate. This environment attracted diverse human groups, from hunter-gatherers to one of the most influential pre-Hispanic cultures of Mesoamerica: the Mexica, also known as the Aztec. The subsoil of Mexico City hides a rich and varied cultural heritage. The Archaeological Rescue Department works to preserve cultural heritage, review archaeological studies, and expand archaeological information with new findings. We report on archaeological rescue works carried out at two sites in the Mexico City Basin prior to the beginning of new construction projects. The first one is the Reforma Hidalgo Complex Office in Teocaltitlán, one of the neighborhoods of ancient Mexica City, Mexico-Tenochtitlan. Some wooden post samples were selected for accelerator mass spectrometry radiocarbon (AMS 14C) dating, believed to have been used as chinampa supports. We seek to determine their temporality and possible reuse by Hispanic builders. The second one, the La Otra Banda Site, is part of the human settlements that were founded around Cuicuilco, one of the main ancient urban centers of the highlands of Central Mexico. Some human bones and coal samples were selected to be dated, aiming to establish the site’s occupation time.

Type
Conference Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 1st Latin American Radiocarbon Conference, Rio de Janeiro, 29 Jul.–2 Aug. 2019

References

REFERENCES

Alvarado Tezozómoc, H. 1992. Crónica Mexicáyotl (1609). UNAM. Instituto de Investigaciones Históricas.Google Scholar
Balcorta, A, Alavez, M. 2018. Informe parcial Salvamento arqueológico La Otra Banda no. 1, Dirección de Salvamento Arqueológico-INAH, México.Google Scholar
Boturini, C. 1964. Códice Boturini o Tira de Peregrinación. Antigüedades de México.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Caso, A. 1956. Los barrios antiguos de Tenochtitlán y Tletelolco. Memorias de la Academia Mexicana de Historia, México. p. 64.Google Scholar
Córdoba, C, Martin del Pozzo, AL, López Camacho, J. 1994. Paleolandforms and volcanic impact on the environment of prehistoric Cuicuilco, southern Mexico City. Journal of Archaeological Science 21:585596.CrossRefGoogle Scholar
Deevey, ES, Gralenski, LJ, Hoffren, V. 1959. Yale natural radiocarbon measurements IV. Radiocarbon 1:144172.CrossRefGoogle Scholar
Fergusson, GJ, Libby, WF. 1963. UCLA radiocarbon dates II. Radiocarbon 5:122.CrossRefGoogle Scholar
Flores Montes de Oca, ZB. 2018. Informe del Proyecto de Salvamento Arqueológico Conjunto de Oficinas Reforma-Hidalgo, INAH-DSA 2016-97, México.Google Scholar
Goh, KM, Molloy, BPJ. 1972. Reliability of radiocarbon dates from buried charcoals. Proceedings of the 8th International Conference on Radiocarbon Dating. Volume 2. Wellington: The Royal Society of New Zealand.Google Scholar
Gonzalez, S, Jiménez-López, JC, Hedges, R, Huddart, D, Ohman, JC, Turner, A, Pompa, Padilla, JA. 2003. Earliest humans in the Americas: new evidence from México. Journal of Human Evolution, 44(3):379387.Google ScholarPubMed
Hajdas, I, Michczynski, A, Bonani, G, Wacker, L, Furrer, H. 2009. Dating bones near the limit of the radiocarbon dating method: study case mammoth from Niederweningen, ZH Switzerland. Radiocarbon 51(2):675680.CrossRefGoogle Scholar
Hosler, D, Macfarlane, A. 1996. Copper sources, metal production, and metals trade in Late Postclassic Mesoamerica. Science:18191824.CrossRefGoogle Scholar
León-Portilla, M, Garibay-Kintana, AM. 1976. Visión de los vencidos: relaciones indígenas de la conquista. UNAM.Google Scholar
López Luján, L, Ruvalcaba, JL. 2020. El tejo de oro y la noche triste. Arqueología Mexicana 27(161): 1421.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241242.CrossRefGoogle ScholarPubMed
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(2–3):13581370.CrossRefGoogle Scholar
Niederberger, C. 1987. Paléopaysages and pre-urban archaeology of the basin of Mexico. CEMCA, México.Google Scholar
Pérez Campa, M, Rangel Guajardo, FC, Sandoval Aguilar, Z. 2002. Zona arqueológica Cuicuilco, Ciudad de México. INAH, México.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Siebe, C. 2000. Age and archaeological implications of Xitle volcano, southwestern Basin of Mexico-City. Journal of Volcanology and Geothermal Research 104(1–4):4564.CrossRefGoogle Scholar
Solís, C, Chávez-Lomelí, E, Ortiz, ME, Huerta, A, Andrade, E, Barrios, E. 2014. A new AMS facility in Mexico. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 331:233237.CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931934.CrossRefGoogle Scholar
White, SE, Reyes-Cortés, M, Ortega-Ramírez, J, Valastro, S. 1990. El Ajusco: Geomorfología volcánica y acontecimientos glaciales durante el Pleistoceno superior y comparación con las series glaciales mexicanas y las de las Montañas Rocallosas. INAH-Colección Científica, Serie Arqueológica. Vol. 212. 77 p.Google Scholar