Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T08:06:03.780Z Has data issue: false hasContentIssue false

SOIL EROSION CAUSED THE INCREASING HOLOCENE RADIOCARBON RESERVOIR EFFECT OF LAKE KANAS IN THE ALTAI MOUNTAINS

Published online by Cambridge University Press:  30 January 2023

Huihui Cao
Affiliation:
MOE Key Laboratory of Western China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Xiaozhong Huang*
Affiliation:
MOE Key Laboratory of Western China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Lixiong Xiang
Affiliation:
MOE Key Laboratory of Western China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
*
*Corresponding author. Email: xzhuang@lzu.edu.cn

Abstract

Radiocarbon (14C) dating of the total organic carbon (TOC) content of lacustrine sediments is always affected by a 14C reservoir effect and the 14C dates are often systematically older than the true ages. However, there are few studies of the temporal changes of the 14C reservoir effect, with reference to the specific influencing factors. We collected TOC samples from the Holocene sediments of Lake Kanas, in the southern Altai Mountains, for AMS 14C dating and compared the results with AMS 14C ages based on terrestrial plant macrofossils from the same depths. The results show that the reservoir ages progressively increased from ∼0 to ∼2800 yr between ∼9700 cal BP and ∼530 cal BP. As the lake catchment was glaciated prior to the Holocene, and Holocene soils and peats are the main sources of the TOC in the lake sediments, we argue that soil erosion is the major factor contributing to the progressive increase in the reservoir age. Based on previously reported evidence for increasing moisture in central Asia and glacier advances in the mid-to-late Holocene, we suggest that the intensified soil erosion on the hillslopes was caused by increased precipitation during the mid-to-late Holocene and by anthropogenic forest clearance after 1500 cal BP.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agatova, AR, Nazarov, AN, Nepop, RK, Rodnight, H. 2012. Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology. Quaternary Science Reviews 43:7493.CrossRefGoogle Scholar
Agatova, A, Nepop, R, Nazarov, A, Ovchinnikov, I, Moska, P. 2021. Climatically driven Holocene glacier advances in the Russian Altai based on radiocarbon and OSL dating and tree ring analysis. Climate 9(11):162.CrossRefGoogle Scholar
Aizen, EM, Aizen, VB, Melack, JM, Nakamura, T, Ohta, T. 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International Journal of Climatology: A Journal of the Royal Meteorological Society 21(5):535556.10.1002/joc.626CrossRefGoogle Scholar
An, F, Lai, Z, Liu, X, Wang, Y, Chang, Q, Lu, B, Yang, X. 2018. Luminescence chronology and radiocarbon reservoir age determination of lacustrine sediments from the Heihai Lake, NE Qinghai-Tibetan Plateau and its paleoclimate implications. Journal of Earth Science 29(3):695706.CrossRefGoogle Scholar
Andree, M, Oeschger, H, Siegenthaler, U, Riesen, T, Moell, M, Ammann, B, Tobolski, K. 1986. 14C dating of plant macrofossils in lake sediment. Radiocarbon 28(2A):411416.10.1017/S0033822200007529CrossRefGoogle Scholar
Björck, S, Wohlfarth, B. 2001. 14C chronostratigraphic techniques in paleolimnology. In: Last, W, Smol, JP, editors. Tracking environmental change using lake sediments. basin analysis, coring and chronological techniques, 1. Netherlands: Kluwer Academic Publishers. p. 205245.CrossRefGoogle Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3):457474.10.1214/ba/1339616472CrossRefGoogle Scholar
Blaauw, M, van Geel, B, Kristen, I, Plessen, B, Lyaruu, A, Engstrom, DR, van der Plicht, J. Verschuren D. 2011. High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa. Quaternary Science Reviews 30(21–22):30433059.10.1016/j.quascirev.2011.07.014CrossRefGoogle Scholar
Bonk, A, Tylmann, W, Goslar, T, Wacnik, A, Grosjean, M. 2015. Comparing varve counting and 14C-AMS chronologies in the sediments of Lake Żabińskie, Northeastern Poland: implications for accurate 14C dating of lake sediments. Geochronometria 42(1):159171.10.1515/geochr-2015-0019CrossRefGoogle Scholar
Bureau of National Cultural Relics. 2012. Atlas of Chinese cultural relics—fascicule of Xinjiang Uygur autonomous region. Beijing: China Cartographic Publishing House Press. In Chinese.Google Scholar
Chen, F, Jia, J, Chen, J, Li, G, Zhang, X, Xie, H, Xia, D, Huang, W, An, C. 2016. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quaternary Science Reviews 146:134146.CrossRefGoogle Scholar
Chen, F, Chen, J, Huang, W, Chen, S, Huang, X, Jin, L, Jia, J, Zhang, X, An, C, Zhang, J, Zhao, Y, Yu, Z, Zhang, R, Liu, J, Zhou, A, Feng, S. 2019. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Science Reviews 192: 337354.CrossRefGoogle Scholar
Chen, H, Zhu, L, Ju, J, Wang, J, Ma, Q. 2019. Temporal variability of 14C reservoir effects and sedimentological chronology analysis in lake sediments from Chibuzhang Co, North Tibet (China). Quaternary Geochronology 52:88102.10.1016/j.quageo.2019.02.009CrossRefGoogle Scholar
Chen, X, Huang, X, Wu, D, Chen, J, Zhang, J, Zhou, A, Dodson, J, Zawadzki, A, Jacobsen, G, Yu, J, Wu, Q, Chen, F. 2022. Late Holocene land use evolution and vegetation response to climate change in the watershed of Xingyun Lake, SW China. Catena 211:105973.CrossRefGoogle Scholar
Cook, CG, Leng, MJ, Jones, RT, Langdon, PG, Zhang, E. 2012. Lake ecosystem dynamics and links to climate change inferred from a stable isotope and organic palaeorecord from a mountain lake in southwestern China (ca. 22.6–10.5 cal ka BP). Quaternary Research 77(1):132137.10.1016/j.yqres.2011.09.011CrossRefGoogle Scholar
Druffel, EM, Suess, HE. 1983. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research: Oceans 88(C2):12711280.CrossRefGoogle Scholar
Fan, Q, Ma, H, Ma, Z, Wei, H, Han, F. 2014. An assessment and comparison of 230Th and AMS 14C ages for lacustrine sediments from Qarhan Salt Lake area in arid western China. Environmental Earth Sciences 71(3):12271237.10.1007/s12665-013-2526-5CrossRefGoogle Scholar
Feng, Z, Sun, A, Abdusalih, N, Ran, M, Kurban, A, Lan, B, Zhang, D, Yang, Y. 2017. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene. The Holocene 27(5):683693.10.1177/0959683616670469CrossRefGoogle Scholar
Feng, M, Ren, M. 1990. Scientific investigation on Kanas Lake in Xinjiang. Beijing: Science Press. In Chinese.Google Scholar
Fontes, JC, Gasse, F, Gibert, E. 1996. Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeography, Palaeoclimatology, Palaeoecology 120(1–2):2547.10.1016/0031-0182(95)00032-1CrossRefGoogle Scholar
Frueh, WT. 2012. Sediment reservoir dynamics on steep land valley floors: Influence of network structure and effects of inherited ages [Master’s dissertation].Oregon State University.Google Scholar
Hall, BL, Henderson, GM. 2001. Use of uranium–thorium dating to determine past 14C reservoir effects in lakes: examples from Antarctica. Earth and Planetary Science Letters 193(3–4):565577.CrossRefGoogle Scholar
He, X, Zhou, J, Zhang, X, Tang, K. 2006. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Regional Environmental Change 6(1):6270.10.1007/s10113-005-0004-7CrossRefGoogle Scholar
Hou, J, D’Andrea, WJ, Liu, Z. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews 48:6779.CrossRefGoogle Scholar
Huang, X, Peng, W, Rudaya, N, Grimm, EC, Chen, X, Cao, X, Zhang, J, Pan, X, Liu, S, Chen, C, Chen, F. 2018. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas. Geophysical Research Letters 45(13):66286636.10.1029/2018GL078028CrossRefGoogle Scholar
Huang, X, Ren, X, Chen, X, Zhang, J, Zhang, X, Shen, Z, Hu, Y, Chen, F. 2021b. Anthropogenic mountain forest degradation and soil erosion recorded in the sediments of Mayinghai Lake in northern China. Catena 207:105597.CrossRefGoogle Scholar
Huang, X, Xiang, L, Lei, G, Sun, M, Qiu, M, Storozum, M, Huang, C, Munkhbayar, C, Demberel, O, Zhang, J, Zhang, J, Chen, X, Chen, J, Chen, F. 2021a. Sedimentary Pediastrum record of middle–late Holocene temperature change and its impacts on early human culture in the desert-oasis area of northwestern China. Quaternary Science Reviews 265:107054. doi: 10.1016/j.quascirev.2021.107054.CrossRefGoogle Scholar
Huang, XZ, Chen, FH, Fan, YX, Yang, ML. 2009. Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China. Quaternary International 194(1–2):1927.10.1016/j.quaint.2007.10.002CrossRefGoogle Scholar
Shen, J, Liu, X, Wang, S, Matsumoto, R. 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136(1):131140.Google Scholar
Kwiecien, O, Arz, HW, Lamy, F, Wulf, S, Bahr, A, Röhl, U, Haug, GH. 2008. Estimated reservoir ages of the Black Sea since the last glacial. Radiocarbon 50(1):99118.10.1017/S0033822200043393CrossRefGoogle Scholar
Lan, B, Zhang, D, Yang, Y. 2018. Lacustrine sediment chronology defined by 137Cs, 210Pb and 14C and the hydrological evolution of Lake Ailike during 1901–2013, northern Xinjiang, China. Catena 161 :104112.CrossRefGoogle Scholar
Li, Y, Qiang, M, Jin, Y, Liu, L, Zhou, A, Zhang, J. 2018. Influence of aquatic plant photosynthesis on the reservoir effect of Genggahai Lake, northeastern Qinghai-Tibetan Plateau. Radiocarbon 60(2):561569.CrossRefGoogle Scholar
Lin, X, Rioual, P, Peng, W, Yang, H, Huang, X. 2018. Impact of recent climate change on Lake Kanas, Altai Mountains (NW China) inferred from diatom and geochemical evidence. Journal of paleolimnology 59(4):461477.10.1007/s10933-018-0019-yCrossRefGoogle Scholar
Liu, CH, You, GX, Pu, JC. 1982. Glacier Inventory of China II: Altay Mountains. Lanzhou Institute of Glaciology and Cryopedology, Academia Sinica, Lanzhou. p. 187. In Chinese.Google Scholar
Liu, X, Herzschuh, U, Shen, J, Jiang, Q, Xiao, X. 2008. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quaternary Research 70(3):412425.CrossRefGoogle Scholar
Meyers, PA, Teranes, JL. 2002. Sediment organic matter—tracking environmental change using lake sediments. Dordrecht: Springer. p. 239269.10.1007/0-306-47670-3_9CrossRefGoogle Scholar
Mischke, S, Weynell, M, Zhang, C, Wiechert, U. 2013. Spatial variability of 14C reservoir effects in Tibetan Plateau lakes. Quaternary International 313:147155.10.1016/j.quaint.2013.01.030CrossRefGoogle Scholar
Muscheler, R, Kromer, B, Björck, S, Svensson, A, Friedrich, M, Kaiser, KF, Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geoscience 1(4):263267.CrossRefGoogle Scholar
Olsson, IU. 2009. Radiocarbon dating history: early days, questions, and problems met. Radiocarbon 51(1):143.10.1017/S0033822200033695CrossRefGoogle Scholar
Payette, S, Delwaide, A, Schaffhauser, A, Magnan, G. 2012. Calculating long-term fire frequency at the stand scale from charcoal data. Ecosphere 3(7):116.CrossRefGoogle Scholar
Ramsey, CB. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Rao, Z, Shi, F, Li, Y, Huang, C, Zhang, X, Yang, W, Liu, L, Zhang, X, Wu, Y. 2020. Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ18O/δ13C records from an alpine peat core from central Asia. Quaternary Science Reviews 232:106217.CrossRefGoogle Scholar
Reimer, PJ, Austin, WE, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, SM, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, S, Miyake, F, Olsen, J, Frederick, R, Sakamoto, M, Sookdeo, A Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Schroeter, N, Mingram, J, Kalanke, J, Lauterbach, S, Tjallingii, R, Schwab, VF, Gleixner, G. 2021. The reservoir age effect varies with the mobilization of pre-aged organic carbon in a high-altitude Central Asian catchment. Frontiers in Earth Science 9:532.CrossRefGoogle Scholar
Sun, A, Feng, Z, Ran, M, Zhang, C. 2013. Pollen-recorded bioclimatic variations of the last ∼22,600 years retrieved from Achit Nuur core in the western Mongolian Plateau. Quaternary International 311:3643.CrossRefGoogle Scholar
Talbot, MR, Johannessen, T. 1992. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters 110(1–4):2337.CrossRefGoogle Scholar
Tang, Y. 2014. Holocene environmental changes inferred from GDGTs from peatlands in the Altai Mountains, Xinjiang of China [master’s thesis]. Lanzhou University of China. In Chinese.Google Scholar
Tlan, J, Brown, TA, Hul, FS. 2005. Comparison of varve and 14C chronologies from Steel Lake, Minnesota, USA. The Holocene 15(4):510517.CrossRefGoogle Scholar
Wang, W, Feng, Z. 2013. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic records. Earth-Science Reviews 122: 3857.CrossRefGoogle Scholar
Wang, W, Zhang, D. 2019. Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China. Global and Planetary Change 179:1022.CrossRefGoogle Scholar
Wang, YH, Huang, XZ, Peng, W, Zhou, GP, Zhang, J, Du, X. 2017. Temperature variations over the past 600 years documented by a δ13C record from terrestrial plant remains from Kanas Lake, Altai Mountains, Northwestern China. Chinese Science Bulletin 62(24):28292839. In Chinese with English abstract.CrossRefGoogle Scholar
Watanabe, T, Matsunaka, T, Nakamura, T, Nishimura, M, Sakai, T, Lin, X, Horiuchi, K, Nara, FW, Kakegawa, T, Zhu, L. 2010. 14C dating of Holocene soils from an island in Lake Pumoyum Co (southeastern Tibetan plateau). Radiocarbon 52(3):14431448.CrossRefGoogle Scholar
Wilkins, D, De Deckker, P, Fifield, LK, Gouramanis, C, Olley, J. 2012. Comparative optical and radiocarbon dating of laminated Holocene sediments in two maar lakes: Lake Keilambete and Lake Gnotuk, south-western Victoria, Australia. Quaternary Geochronology 9:315.CrossRefGoogle Scholar
Wu, J, Liu, W, Zeng, H, Ma, L, Bai, R. 2014. Water quantity and quality of six lakes in the arid Xinjiang region, NW China. Environmental Processes 1(2):115125.CrossRefGoogle Scholar
Wu, Y, Li, S, Lücke, A, Wünnemann, B, Zhou, L, Reimer, P, Wang, S. 2010. Lacustrine radiocarbon reservoir ages in Co Ngoin and Zigê Tangco, central Tibetan plateau. Quaternary International 212(1):2125.10.1016/j.quaint.2008.12.009CrossRefGoogle Scholar
Xinjiang Comprehensive Survey Team, C. A. o. S., & Institute of Botany, C. A. o. S. 1978. Xinjiang vegetation and its utilization. Beijing: Science Press. In Chinese.Google Scholar
Xu, D, Lu, H, Jin, C, Gu, Z, Zuo, X, Dong, Y, Wang, C, Wang, L, Li, H, Yu, Y, Jin, Y, Wu, N. 2021. Application of multiple dating techniques to the Holocene sediments of Angrenjin Co in the southern Tibetan Plateau. Quaternary Geochronology 62: 101148. doi: 10.1016/j.quageo.2020.101148.CrossRefGoogle Scholar
Xu, H, Lan, J, Zhang, G, Zhou, X. 2019. Arid central Asia saw mid-Holocene drought. Geology 47(3):255258.CrossRefGoogle Scholar
Xu, X, Yang, J, Dong, G, Wang, L, Miller, L. 2009. OSL dating of glacier extent during the Last Glacial and the Kanas Lake basin formation in Kanas River valley, Altai Mountains, China. Geomorphology 112(3-4):306317.CrossRefGoogle Scholar
Zhang, D, Feng, Z, Yang, Y, Lan, B, Ran, M, Mu, G. 2018a. Peat δ13Ccelluose-recorded wetting trend during the past 8000 years in the southern Altai Mountains, northern Xinjiang, NW China. Journal of Asian Earth Sciences 156:174179.CrossRefGoogle Scholar
Zhang, D, Yang, Y, Lan, B. 2018b. Climate variability in the northern and southern Altai Mountains during the past 50 years. Scientific Reports 8(1):111.Google ScholarPubMed
Zhang, Q, Liu, X, Li, H. 2021. Impact of hydrological conditions on the radiocarbon reservoir effect in lake sediment 14C dating: the case of Kusai Lake on the northern Qinghai-Tibet Plateau. Quaternary Geochronology 62:101149. doi: 10.1016/j.quageo.2020.101149.CrossRefGoogle Scholar
Zhang, T, Elias, SA. 2019. Holocene palaeoenvironmental reconstruction based on fossil beetle faunas from the Southern Altai region, north-west China. Journal of Quaternary Science 34(8):593602.10.1002/jqs.3135CrossRefGoogle Scholar
Zhang, Y, Meyers, PA, Liu, X, Wang, G, Ma, X, Li, X, Yuan, Y, Wen, B. 2016. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China. Quaternary Science Reviews 152:1930.CrossRefGoogle Scholar
Zheng, F. 2006. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere 16(4):420427.CrossRefGoogle Scholar
Zhou, A, He, Y, Wu, D, Zhang, X, Zhang, C, Liu, Z, Yu, J. 2015. Changes in the radiocarbon reservoir age in Lake Xingyun, Southwestern China during the Holocene. PLoS One 10(3):e0121532. doi: 10.1371/journal.pone.0121532.CrossRefGoogle ScholarPubMed
Zhou, A, Chen, F, Wang, Z, Yang, M, Qiang, M, Zhang, J. 2009. Temporal change of radiocarbon reservoir effect in Sugan Lake, northwest China during the late Holocene. Radiocarbon 51(2):529535.CrossRefGoogle Scholar
Zhou, K, Xu, H, Lan, J, Yan, D, Sheng, E, Yu, K, Song, Y, Zhang, J, Fu, P, Xu, S. 2020. Variable late Holocene 14C reservoir ages in lake Bosten, Northwestern China. Frontiers in Earth Science 7:328. doi: 10.3389/feart.2019.00328.CrossRefGoogle Scholar
Zhou, W, Cheng, P, Jull, AT, Lu, X, An, Z, Wang, H, Zhu, Y, Wu, Z. 2014. 14C chronostratigraphy for Qinghai Lake in China. Radiocarbon 56(1):143155.CrossRefGoogle Scholar
Zhou, W, Chui, Y, Yang, L, Cheng, P, Chen, N, Ming, G, Hu, Y, Li, W, Lu, X. 2021. 14C Geochronology and Radiocarbon reservoir effect of reviewed lakes study in China. Radiocarbon: 1–12. doi: 10.1017/RDC.2021.92.CrossRefGoogle Scholar