Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-21T18:21:12.308Z Has data issue: false hasContentIssue false

Accurate Dating of Organic Deposits by AMS 14C Measurement of Macrofossils

Published online by Cambridge University Press:  18 July 2016

Torbjörn E. Törnqvist
Affiliation:
Department of Physical Geography/Laboratory of Palaeobotany and Palynology, University of Utrecht, Heidelberglaan 2, NL-3584 CS Utrecht, The Netherlands
Arie F. M. de Jong
Affiliation:
Robert J. van de Graaff Laboratorium, Rijksuniversiteit Utrecht, P. O. Box 80000, NL-3508 TA Utrecht, The Netherlands
Wilma A. Oosterbaan
Affiliation:
Robert J. van de Graaff Laboratorium, Rijksuniversiteit Utrecht, P. O. Box 80000, NL-3508 TA Utrecht, The Netherlands
Klaas Van Der Borg
Affiliation:
Robert J. van de Graaff Laboratorium, Rijksuniversiteit Utrecht, P. O. Box 80000, NL-3508 TA Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We made a comparative study of AMS 14C ages of organic deposits (minerotrophic peats and gyttjas) and macrofossils in order to evaluate the magnitude of a number of sources of error that may be present in bulk sediment samples. The consistency of 14C ages found for coexisting macrofossils suggests that they are unlikely to record disturbances. Some of our gyttja samples yielded an age 0.2–0.6 ka 14C years too old due to hardwater effect. We also found an aging effect in several bulk samples with a high admixture of siliciclastic material; this is attributed to fluvial input of reworked, older organic debris. Rejuvenation of bulk material as a result of root contamination occurs mainly in samples overlain by slowly accumulated deposits, and particularly in samples affected by (sub)recent roots.

Type
II. Applied Isotope Geochemistry
Copyright
Copyright © The American Journal of Science 

References

Ammann, B. and Lotter, A. F. 1989 Late-Glacial radiocarbon and palynostratigraphy on the Swiss Plateau. Boreas 18: 109126.CrossRefGoogle Scholar
Andrée, M., Oeschger, H., Siegenthaler, U., Riesen, T., Moell, M., Ammann, B. and Tobolski, K. 1986 14C dating of plant macrofossils in lake sediment. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2A): 411416.CrossRefGoogle Scholar
Berendsen, H. J. A. 1986 Holocene afzettingen in de Bommelerwaard: de Betuwe Formatie en de Broek Formatie. In Berendsen, H. J. A., ed., Het landschap van de Bommelerwaard. Nederlandse Geografische Studies 10: 3159.Google Scholar
Blong, R. J. and Gillespie, R. 1978 Fluvially transported charcoal gives erroneous 14C ages for recent deposits. Nature 271: 739741.CrossRefGoogle Scholar
Brown, T. A., Nelson, D. E., Mathewes, R. W., Vogel, J. S. and Southon, J. R. 1989 Radiocarbon dating of pollen by accelerator mass spectrometry. Quaternary Research 32: 205212.Google Scholar
Cwynar, L. C. and Watts, W. A. 1989 Accelerator-mass spectrometer ages for late-glacial events at Ballybetagh, Ireland. Quaternary Research 31: 377380.CrossRefGoogle Scholar
Deevey, E. S. Jr., Gross, M. S., Hutchinson, G. E. and Kraybill, H. L. 1954 The natural C14 contents of materials from hard-water lakes. Proceedings of the National Academy of Sciences of the USA 40: 285288.CrossRefGoogle Scholar
Fowler, A. J., Gillespie, R. and Hedges, R. E. M. 1986a Radiocarbon dating of sediments by accelerator mass spectrometry. Physics of the Earth and Planetary Interiors 44: 1520.CrossRefGoogle Scholar
Fowler, A. J., Gillespie, R. and Hedges, R. E. M. 1986b Radiocarbon dating of sediments. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2A): 441450.CrossRefGoogle Scholar
Håkansson, S. 1979 Radiocarbon activity in submerged plants from various South Swedish lakes. In Berger, R. and Suess, H. E., eds., Radiocarbon Dating. Proceedings of the 9th International 14C Conference. Berkeley, University of California Press: 433443.Google Scholar
Lister, G., Kelts, K., Schmid, R., Bonani, G., Hofmann, H., Morenzoni, E., Nessi, M., Suter, M. and Wölfli, W. 1984 Correlation of the paleoclimatic record in lacustrine sediment sequences: 14C dating by AMS. In Wölfli, W., Polach, H. A. and Anderson, H. H., eds., Proceedings of the 3rd International Symposium on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B5: 389393.CrossRefGoogle Scholar
Lowe, J. J., Lowe, S., Fowler, A. J., Hedges, R. E. M. and Austin, T. J. F 1988 Comparison of accelerator and radiometric radiocarbon measurements obtained from Late Devensian Late glacial lake sediments from Llyn Gwernan, North Wales, UK. Boreas 17: 355369.CrossRefGoogle Scholar
MacDonald, G. M., Beukens, R. P., Kieser, W. E. and Vitt, D. H. 1987 Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the ‘ice-free corridor’ of western Canada. Geology 15: 837840.2.0.CO;2>CrossRefGoogle Scholar
Marčenko, E., Srdoč, D., Golubić, S., Pezdič, J. and Head, M. J. 1989 Carbon uptake in aquatic plants deduced from their natural 13C and 14C content. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31 (3): 785794.CrossRefGoogle Scholar
Mook, W. G. 1983 14C calibration curves depending on sample time-width. In Mook, W. G. and Waterbolk, H. T., eds., Proceedings of the 1st International Symposium 14C and Archaeology. PACT 8: 517525.Google Scholar
Mook, W. G. and Streurman, H. J. 1983 Physical and chemical aspects of radiocarbon dating. In Mook, W. G. and Waterbolk, H. T., eds., Proceedings of the 1st International Symposium 14C and Archaeology. PACT 8: 3155.Google Scholar
Mook, W. G. and van de Plassche, O. 1986 Radiocarbon dating. In van de Plassche, O., ed., Sea-level Research: A Manual for the Collection and Evaluation of Data. Norwich, England, Geo Books: 525560.Google Scholar
Nelson, R. E., Carter, L. D. and Robinson, S. W. 1988 Anomalous radiocarbon ages from a Holocene detrital organic lens in Alaska and their implications for radiocarbon dating and paleoenvironmental reconstructions in the Arctic. Quaternary Research 29: 6671.CrossRefGoogle Scholar
Olsson, I. U. 1974 Some problems in connection with the evaluation of C14 dates. Geologiska Föreningens i Stockholm Förhandlingar 96: 311320.CrossRefGoogle Scholar
Olsson, I. U. 1979 A warning against radiocarbon dating of samples containing little carbon. Boreas 8: 203207.CrossRefGoogle Scholar
Olsson, I. U. 1983 Dating non-terrestrial materials. In Mook, W. G. and Waterbolk, H. T., eds., Proceedings of the 1st International Symposium 14C and Archaeology. PACT 8: 277294.Google Scholar
Peteet, D. M., Vogel, J. S., Nelson, D. E., Southon, J. R., Nickmann, R. J. and Heusser, L. E. 1990 Younger Dryas climatic reversal in northeastern USA? AMS ages for an old problem. Quaternary Research 33: 219230.Google Scholar
Roeleveld, W. and Steenbeek, R., in press, Radiocarbon dating of vegetation horizons and other organic beds in the Holocene fluvial succession in the Dutch river clay area. In Steenbeek, R., ed., On the balance between wet and dry. Vegetation horizon development and prehistoric occupation; a palaeoecological-micromorphological study in the Dutch river area. Nederlandse Oudheden. Google Scholar
Scholl, D. W. and Stuiver, M. 1967 Recent submergence of southern Florida: a comparison with adjacent coasts and other eustatic data. Geological Society of America Bulletin 78: 437454.CrossRefGoogle Scholar
Schoute, J. F. Th. 1984 Vegetation horizons and related phenomena. A palaeoecological-micromorphological study in the younger coastal Holocene of the northern Netherlands (Schildmeer area). Dissertationes Botanicæ 81: 1270.Google Scholar
Schoute, J. F. Th., Griede, J. W., Mook, W. G. and Roeleveld, W. 1981 Radiocarbon dating of vegetation horizons, illustrated by an example from the Holocene coastal plain in the northern Netherlands. In van Loon, A. J., ed., Quaternary geology: A farewell to A. J. Wiggers. Geologie en Mijnbouw 60: 453459.Google Scholar
Schoute, J. F. Th., Mook, W. G. and Streurman, H. J. 1983 Radiocarbon dating of vegetation horizons: methods and preliminary results. In Mook, W. G. and Waterbolk, H. T., eds., Proceedings of the 1st International Symposium 14C and Archaeology. PACT 8: 295311.Google Scholar
Shotton, F. W. 1972 An example of hard-water error in radiocarbon dating of vegetable matter. Nature 240: 460461.CrossRefGoogle Scholar
Smits, A. J. M., de Lyon, M. J. H., van der Velde, G., Steentjes, P. L. M. and Roelofs, J. G. M. 1988 Distribution of three nymphaeid macrophytes (Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze) in relation to alkalinity and uptake of inorganic carbon. Aquatic Botany 32: 4562.CrossRefGoogle Scholar
Streif, H. 1971 Stratigraphie und Faziesentwicklung im Küstengebiet von Woltzeten in Ostfriesland. Beihefte zum Geologischen Jahrbuch 119: 161.Google Scholar
Streif, H. 1972 The results of stratigraphical and facial investigations in the coastal Holocene of Woltzeten/Ostfriesland, Germany. Geologiska Foreningens i Stockholm Förhandlingar 94: 281299.CrossRefGoogle Scholar
Teunissen, D. 1986 Palynological investigation of some residual gullies in the Upper Betuwe (the Netherlands). Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 36: 724.Google Scholar
Törnqvist, T. E., de Jong, A. F. M. and van der Borg, K. 1990 Comparison of AMS 14C ages of organic deposits and macrofossils: a progress report. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 442445.CrossRefGoogle Scholar
van de Plassche, O. 1980 Compaction and other sources of error in obtaining sea-level data: Some results and consequences. Eiszeitalter und Gegenwart 30: 171181.Google Scholar
van de Plassche, O. 1982 Sea-level change and water-level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst 36: 193.Google Scholar
van der Borg, K., Alderliesten, C., Houston, C. M., de Jong, A. F. M. and van Zwol, N. A. 1987 Accelerator mass spectrometry with 14C and 10Be in Utrecht. In Gove, H. E., Litherland, A. E. and Elmore, D., eds., Proceedings of the 4th International Symposium on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B29: 143145.CrossRefGoogle Scholar
van der Plicht, J. and Mook, W. G. 1989 Calibration of radiocarbon ages by computer. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 805816.Google Scholar
van Geel, B., Coope, G. R. and van der Hammen, T. 1989 Palaeoecology and stratigraphy of the Late-glacial type section at Usselo (The Netherlands). Review of Palaeobotany and Palynology 60: 25129.Google Scholar
Vogel, J. C. and Zagwijn, W. H. 1967 Groningen radiocarbon dates VI. Radiocarbon 9: 63106.CrossRefGoogle Scholar
Vogel, J. S., Briskin, M., Nelson, D. E. and Southon, J. R. 1989 Ultra-small carbon samples and the dating of sediments. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 601609.CrossRefGoogle Scholar