Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T09:41:00.296Z Has data issue: false hasContentIssue false

Age-Depth Model of Lake Soppensee (Switzerland) Based on the High-Resolution 14C Chronology Compared with Varve Chronology

Published online by Cambridge University Press:  18 July 2016

Irka Hajdas*
Affiliation:
Laboratory of Ion Beam Physics, ETH Zürich, Schafmattstrasse 20, 8093 Zürich, Switzerland
Adam Michczyński
Affiliation:
Silesian University of Technology, Institute of Physics, Radiocarbon Laboratory, GADAM Centre of Excellence, Bolesława Krzywoustego 2, 44–100 Gliwice, Poland
*
Corresponding author. Email: hajdas@phys.ethz.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An age-depth model for laminated sediments of Lake Soppensee is constructed using radiocarbon ages of macrofossils and a depositional model of the OxCal v 4.1 program with the updated IntCal09 data set. The resulting calendar chronology is compared with the varve chronology that was built for this record in a previous study (Hajdas 1993); there is a very good agreement between the 2 approaches. This illustrates the potential of high-resolution 14C dating for construction of reliable, high-resolution calendar timescales for sedimentary records. Based on the age-depth model of this study, the Vasset/Killian tephra found in sediment of Soppensee dates to a calendar age of 9291–9412 cal BP (2-σ range) while the Lachersee tephra dates to 12,735–12,871 cal BP (2-σ range). Precise dating of the Late Glacial boundaries is possible with this chronology but requires more precise correlation between proxies and records than typically practiced.

Type
Calibration, Data Analysis, and Statistical Methods
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Blockley, SPE, Lowe, JJ, Walker, MJC, Asioli, A, Trincardi, F, Coope, GR, Donahue, RE. 2004. Bayesian analysis of radiocarbon chronologies: examples from the European Late-glacial. Journal of Quaternary Science 19(2):159–75.CrossRefGoogle Scholar
Blockley, SPE, Blaauw, M, Bronk Ramsey, C, van der Plicht, J. 2007. Building and testing age models for radiocarbon dates in Lateglacial and Early Holocene sediments. Quaternary Science Reviews 26(15–16):1915–26.CrossRefGoogle Scholar
Blockley, SPE, Bronk Ramsey, C, Lane, CS, Lotter, AF. 2008. Improved age modelling approaches as exemplified by the revised chronology for the Central European varved lake Soppensee. Quaternary Science Reviews 27(1–2):6171.CrossRefGoogle Scholar
Brauer, A, Haug, GH, Dulski, P, Sigman, DM, Negendank, JFW. 2008. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nature Geoscience 1:520–3.CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.CrossRefGoogle Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2):4260.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):1023–45.CrossRefGoogle Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381–9.CrossRefGoogle Scholar
Buck, CE, Cavanagh, WG, Litton, CD. 1996. The Bayesian Approach to Interpreting Archaeological Data. Chichester: Wiley. 402 p.Google Scholar
Buck, CE, Christen, JA, James, GN. 1999. BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7 :http://intarch.ac.uk/journal/issue7/buck_index.html.Google Scholar
Dansgaard, W, Johnsen, SJ, Clausen, HB, Dahl-Jensen, D, Gundestrup, NS, Hammer, CU, Hvidberg, CS, Steffensen, JP, Sveinbjörnsdóttir, AE, Jouzel, J, Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–20.CrossRefGoogle Scholar
De Geer, G. 1912. A geochronology of the last 12,000 years. Comptes Rendus 11th International Geological Congress. Volume 1. Stockholm. p 241–53.Google Scholar
Fischer, A. 1996. Isotopengeochemische Untersuchungen (δO und δC) im Wasser und in den Sedimenten des Soppensees (Kt. Luzern, Schweiz): Klimaveränderungen und Entwicklungsgeschichte des Sees seit dem Spätglazial. ETH Zurich.Google Scholar
Hajdas, I. 1993. Extension of the radiocarbon calibration curve by AMS dating of laminated sediments of Lake Soppensee and Lake Holzmaar [unpublished PhD dissertation]. ETH Nr. 10157, ETH Zurich.Google Scholar
Hajdas, I, Ivy, SD, Beer, J, Bonani, G, Imboden, D, Lotter, AF, Sturm, M, Suter, M. 1993. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12,000 14C years BP. Climate Dynamics 9(3):107–16.CrossRefGoogle Scholar
Heegaard, E, Birks, HJB, Telford, RJ. 2005. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15(4):612–8.CrossRefGoogle Scholar
Ivy-Ochs, S, Kerschner, H, Reuther, A, Preusser, F, Heine, K, Maisch, M, Kubik, PW, Schluchter, C. 2008. Chronology of the last glacial cycle in the European Alps. Journal of Quaternary Science 23(6–7):559–73.CrossRefGoogle Scholar
Lotter, AF. 1989. Evidence of annual layering in Holocene sediments of Soppensee, Switzerland. Aquatic Sciences 51(1):1930.CrossRefGoogle Scholar
Lotter, AF. 1999. Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Vegetation History and Archaeobotany 8(3):165–84.CrossRefGoogle Scholar
Lotter, AF. 2001. The palaeolimnology of Soppensee (Central Switzerland), as evidenced by diatom, pollen, and fossil-pigment analyses. Journal of Paleolimnology 25(1):6579.CrossRefGoogle Scholar
Rasmussen, SO, Andersen, KK, Svensson, AM, Steffensen, JP, Vinther, BM, Clausen, HB, Siggaard-Andersen, ML, Johnsen, SJ, Larsen, LB, Dahl-Jensen, D, Bigler, M, Rothlisberger, R, Fischer, H, Goto-Azuma, K, Hansson, ME, Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research-Atmospheres 111: D06102, doi:10.1029/2005JD006079.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Stuiver, M, Kromer, B, Becker, B, Ferguson, CW. 1986. Radiocarbon age calibration back to 13,300 years BP and the 14C age matching of the German oak and US Bristlecone pine chronologies. Radiocarbon 28(2B):969–79.CrossRefGoogle Scholar
Telford, RJ, Heegaard, E, Birks, HJB. 2004a. All age-depth models are wrong: but how badly? Quaternary Science Reviews 23(1–2):15.CrossRefGoogle Scholar
Telford, RJ, Heegaard, E, Birks, HJB. 2004b. The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14(2):296–8.CrossRefGoogle Scholar