Published online by Cambridge University Press: 18 July 2016
The characterization of late Holocene climates in northern Australia has, in the past, been based on local investigations. This examination of the chenier record of northern Australia indicates that there has been a statistically significant regional change in conditions between 1600–2800 years bp, possibly a period of relative aridity. Support for this conclusion may be found in the vegetation record from the Atherton Tableland where numerical comparisons of dryland fossil and modern pollen spectra suggest that rainfall may have been up to 50% higher during the period 7000 to 3000 bp.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.