Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T10:38:46.207Z Has data issue: false hasContentIssue false

High-Accuracy 14C Measurements for Atmospheric CO2 Samples by AMS

Published online by Cambridge University Press:  18 July 2016

H A J Meijer*
Affiliation:
Centrum voor IsotopenOnderzoek, University of Groningen, the Netherlands
M H Pertuisot
Affiliation:
Centrum voor IsotopenOnderzoek, University of Groningen, the Netherlands
J van der Plicht
Affiliation:
Centrum voor IsotopenOnderzoek, University of Groningen, the Netherlands
*
Corresponding author. Email: h.a.j.meijer@rug.nl.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we investigate how to achieve high-accuracy radiocarbon measurements by accelerator mass spectrometry (AMS) and present measurement series (performed on archived CO2) of 14CO2 between 1985 and 1991 for Point Barrow (Alaska) and the South Pole. We report in detail the measurement plan, the error sources, and the calibration scheme that enabled us to reach a combined uncertainty of better than ±3%. The δ13C correction and a suggestion for a span (or 2-point) calibration for the 14C scale are discussed in detail. In addition, we report new, accurate values for the calibration and reference materials Ox2 and IAEA-C6 with respect to Oxl. The atmospheric 14CO2 records (1985–1991) are presented as well and are compared with other existing records for that period. The Point Barrow record agrees very well with the existing Fruholmen (northern Norway) record from the same latitude. The South Pole record shows a small seasonal cycle but with an extreme phase with a maximum on January 1st (±13 days). Together with its generally elevated 14C level compared to the Neumayer record (coastal Antarctica), this makes our South Pole data set a valuable additional source of information for global carbon cycle modeling using 14CO2 as a constraint.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Aerts-Bijma, ATh, Meijer, HAJ, van der Plicht, J. 1997. AMS sample handling in Groningen. Nuclear Instruments and Methods in Physics Research B 123:221–5.CrossRefGoogle Scholar
Boaretto, E, Bryant, C, Carmi, I, Cook, G, Gulliksen, S, Harkness, D, Heinemeier, J, McClure, J, McGee, E, Naysmith, P, Possnert, G, Scott, M, van der Plicht, H, Van Strydonck, M. 2002. Summary findings of the Fourth International Radiocarbon Intercomparison (FIRI) (1998–2001). Journal of Quaternary Science 17(7):633–7.CrossRefGoogle Scholar
Cleveland, WS. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74:829–36.Google Scholar
Coplen, TB, Brand, WA, Genre, M, Gröning, M, Meijer, HAJ, Toman, B, Verkouteren, RM. 2006. New guidelines for δ13C measurements. Analytical Chemistry 78(7):2439–41.Google Scholar
de Jong, AFM. 1981. Natural 14C variations [PhD dissertation]. Groningen: Groningen University.Google Scholar
Gonfiantini, R. 1984. Advisory group meeting on stable isotope reference samples for geochemical and hydro-logical investigations. Report to the Director-General. Vienna: International Atomic Energy Agency.Google Scholar
International Standards Organization [ISO]. 1993. Guide to the Expression of Uncertainty in Measurement. Geneva: ISO. 32 p.Google Scholar
Keeling, CD, Whorf, TP. 2005. Atmospheric CO2 concentrations (ppmv) derived from flask air samples collected at Point Barrow, Alaska [WWW document]. URL: cdiac.ornl.gov/trends/sio-keel.htm.Google Scholar
Keeling, CD, Bacastow, RB, Carter, AF, Piper, SC, Whorf, TP, Heimann, M, Mook, WG, Roeloffzen, H. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In: Peterson, DH, editor. Aspects of Climate Variability in the Pacific and the Western Americas. Geophysical Monograph 55. Washington, D.C.: American Geophysical Union. p 165235.Google Scholar
Kitagawa, H, Mukai, H, Nojiri, Y, Shibata, Y, Kobayashi, T, Nojiri, T. 2004. Seasonal and secular variations of atmospheric 14CO2 over the western Pacific since 1994. Radiocarbon 46(2):901–10.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.CrossRefGoogle Scholar
Levin, I, Bösinger, R, Bonani, G, Francey, RJ, Kromer, B, Münnich, KO, Suter, M, Trivett, BA, Wölfli, W. 1992. Radiocarbon in atmospheric carbon dioxide and methane: global distribution and trends. In: Taylor, RE, Long, A, Kra, RS, editors. Radiocarbon After Four Decades. New York: Springer-Verlag. p 503–18.Google Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Utters 30(23): doi: 10.1029/2003GL018477.Google Scholar
Manning, M, Lowe, DC, Melhuish, WH, Sparks, RJ, Wallace, G, Brenninkmeijer, CAM, McGill, RC. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1):3758.Google Scholar
Meijer, HAJ, van der Plicht, J, Gislefoss, JS, Nydal, R. 1995. Comparing long-term atmospheric 14C and 3H records near Groningen, the Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C stations. Radiocarbon 37(1):3950.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.Google Scholar
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6):3621–42.Google Scholar
Randerson, JT, Enting, LG, Schuur, EAG, Caldeira, K, Fung, IY. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: post-bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles 16(4): doi: 10.1029/2002GB001876.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04, terrestrial radiocarbon age calibration, 0–26 cal kyr BR Radiocarbon 46(3):1029–58.Google Scholar
Roeloffzen, JC, Mook, WG, Keeling, CD. 1991. Trends and variations in stable carbon isotopes of atmospheric carbon dioxide. Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies. Vienna: International Atomic Energy Agency, p 601–17.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise. Radiocarbon 34(3):506–19.Google Scholar
Scott, EM. 2003. The Third International Radiocarbon Intercomparison (TIRI) and the Fourth International Radiocarbon Intercomparison (FIRI), 1990–2002: results, analyses, and conclusions. Radiocarbon 45(2):135408.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63Google Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122:415–7.CrossRefGoogle Scholar
Tans, PP, de Jong, AFM, Mook, WG. 1979. Natural atmospheric 14C variation and the Suess effect. Nature 280:826–8.Google Scholar
Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA. cdiac.ornl.gov/trends/trends.htm. Various contributors.Google Scholar
Turnbull, JC, Miller, JB, Lehman, SJ, Tans, PP, Sparks, RJ, Southon, J. 2006. Comparison of 14CO2, CO, and SF6 for recently added fossil fuel CO2 and implications for biological CO2 exchange. Geophysical Research Letters 33: doi:10.1029/2005GL024213.CrossRefGoogle Scholar
van der Plicht, J, Bruins, HJ. 2005. Quality control of Groningen 14C results from Tel Rehov: repeatability and intercomparison of proportional gas counting and AMS. In: Levy, TE, Higham, T, editors. Radiocarbon Dating and the Iron Age of the Southern Levant: The Bible and Archaeology Today. London: Equinox Publishing. p 256–70.Google Scholar
van der Plicht, J, Wijma, S, Aerts, AT, Pertuisot, MH, Meijer, HAJ. 2000. Status report: the Groningen AMS facility. Nuclear Instruments and Methods in Physics Research B 172:5865.Google Scholar