Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T00:00:44.416Z Has data issue: false hasContentIssue false

High-Precision Radiocarbon Age Calibration for Terrestrial and Marine Samples

Published online by Cambridge University Press:  18 July 2016

Minze Stuiver
Affiliation:
Department of Geological Sciences and Quaternary Research Center, Box 351360, University of Washington, Seattle, Washington 98195, USA
Paula J. Reimer
Affiliation:
Department of Geological Sciences and Quaternary Research Center, Box 351360, University of Washington, Seattle, Washington 98195, USA
Thomas F. Braziunas
Affiliation:
Department of Geological Sciences and Quaternary Research Center, Box 351360, University of Washington, Seattle, Washington 98195, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Single-year and decadal radiocarbon tree-ring ages are tabulated and discussed in terms of 14C age calibration. The single-year data form the basis of a detailed 14C age calibration curve for the cal ad 1510–1954 interval (“cal” denotes calibrated). The Seattle decadal data set (back to 11,617 cal BP, with 0 BP = ad 1950) is a component of the integrated decadal INTCAL98 14C age curve (Stuiver et al. 1998). Atmospheric 14C ages can be transformed into 14C ages of the global ocean using a carbon reservoir model. INTCAL98 14C ages, used for these calculations, yield global ocean 14C ages differing slightly from previously published ones (Stuiver and Braziunas 1993b). We include discussions of offsets, error multipliers, regional 14C age differences and marine 14C age response to oceanic and atmospheric forcing.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Bard, E. 1988 Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography 3: 635645.CrossRefGoogle Scholar
Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N. and Cabioch, G. 1998 Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: An updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon, this issue.CrossRefGoogle Scholar
Berkman, P. A. and Forman, S. L. 1996 Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean. Geophysical Research Letters 23: 363366.CrossRefGoogle Scholar
Burr, G. S., Beck, J. W., Taylor, F. W., Récy, J., Edwards, R. L. Cabioch, G., Corrège, T., Donahue, D. J. and O'Malley, J. M. 1998 A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon, this issue.CrossRefGoogle Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260: 962968.CrossRefGoogle ScholarPubMed
Forman, S. L. and Polyak, L. 1997 Radiocarbon content of pre-bomb marine mollusks and variations in the 14C reservoir age for coastal areas of the Barents and Kara seas, Russia. Geophysical Research Letters 24: 885888.CrossRefGoogle Scholar
Goodfriend, G. A. and Flessa, K. W. 1997 Radiocarbon reservoir ages in the Gulf of California: Roles of up-welling and flow from the Colorado River. Radiocarbon 39(2): 139148.CrossRefGoogle Scholar
Heier-Nielsen, S., Heinemeier, J., Nielsen, H. L. and Rud, N. 1995 Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37(3): 875882.CrossRefGoogle Scholar
Higham, T. F. G. and Hogg, A. G. 1995 Radiocarbon dating of prehistoric shell from New Zealand and calculation of the ΔR value using fish otoliths. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 409416.CrossRefGoogle Scholar
Ingram, B. L. 1998 Differences in radiocarbon age between shell and charcoal from a Holocene shellmound in northern California. Quaternary Research 49: 102110.CrossRefGoogle Scholar
Ingram, B. L. and Southon, J. R. 1997 Reservoir ages in eastern Pacific coastal and marine waters. Radiocarbon 38(3): 573582.CrossRefGoogle Scholar
Kennett, D. J., Ingram, B. L., Erlandson, J.M. and Walker, P. 1997 Evidence for temporal fluctuations in marine radiocarbon reservoir ages in the Santa Barbara Channel, Southern California. Journal of Archaeological Science 24: 10511059.CrossRefGoogle Scholar
Kromer, B. and Spurk, M. 1998 Revision and tentative extension of the tree-ring based 14C calibration, 9200–11,855 cal BP. Radiocarbon, this issue.CrossRefGoogle Scholar
Linick, T. W., Long, A., Damon, P. E. and Ferguson, C. W. 1986 High-precision radiocarbon dating of bristlecone pine from 6554 to 5350 BC. In Stuiver, M. and Kra, R., eds., Calibration Issue. Radiocarbon 28(2B): 943–953.CrossRefGoogle Scholar
Little, E. A. 1993 Radiocarbon age calibration at archaeological sites of coastal Massachusetts and vicinity. Journal of Archaeological Science 20: 457471.CrossRefGoogle Scholar
McCormac, F. G., Hogg, A. G., Higham, T. F. G., Lynch-Stieglitz, J., Broecker, W. S., Baillie, M. G. L., Palmer, J., Xiong, L., Pilcher, J. R., Brown, D. and Hoper, S.T. 1998a Temporal variation in the interhemispheric 14C offset. Geophysical Research Letters 25: 13211324.CrossRefGoogle Scholar
McCormac, F. G., Hogg, A. G., Higham, T. F. G., Baillie, M. G. L., Palmer, J. G., Xiong, L., Pilcher, J. R., Brown, D. and Hoper, S. T. 1998b Variations of radiocarbon in tree rings: Southern Hemisphere offset preliminary results. Radiocarbon, this issue.CrossRefGoogle Scholar
Pearson, G. W., Becker, B. and Qua, F. 1993 High-precision 14C measurement of German and Irish oaks to show the natural 14C variations from 7890 to 5000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 93104.CrossRefGoogle Scholar
Pearson, G. W. and Qua, F. 1993 High-precision 14C measurement of Irish oaks to show the natural 14C variations from AD 1840–5000 BC: A correction. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 105123.CrossRefGoogle Scholar
Pilcher, J. R., Baillie, M. G. L., Schmidt, B. and Becker, B. 1984 A 7,272-year tree-ring chronology for Western Europe. Nature 312: 150152.CrossRefGoogle Scholar
Southon, J. R., Rodman, A. O. and True, D. 1995 A comparison of marine and terrestrial radiocarbon ages from northern Chile. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 389393.CrossRefGoogle Scholar
Spurk, M., Friedrich, M., Hofmann, J., Remmele, S., Frenzel, B., Leuschner, H. H. and Kromer, B. 1998 Revisions and extension of the Hohenheim oak and pine chronologies: New evidence about the timing of the Younger Dryas / Preboreal transition. Radiocarbon, this issue.CrossRefGoogle Scholar
Stuiver, M. 1982 A high-precision calibration of the AD radiocarbon time scale. Radiocarbon 24(1): 126.CrossRefGoogle Scholar
Stuiver, M. 1993 A note on single-year calibration of the radiocarbon time scale, AD 1510–1954. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 6772.CrossRefGoogle Scholar
Stuiver, M. and Becker, B. 1986 High-precision decadal calibration of the radiocarbon time scale, AD 1950–2500 BC. In Stuiver, M. and Kra, R., eds., Calibration Issue. Radiocarbon 28(2B): 863–910.Google Scholar
Stuiver, M. and Becker, B. 1993 High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 3565.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. 1993a Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships. The Holocene 3: 289305.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. 1993b Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 137189.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. 1998 Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25: 329332.CrossRefGoogle Scholar
Stuiver, M., Burk, R. L. and Quay, P. D. 1984 13C/12C ratios in tree rings and the transfer of biospheric carbon to the atmosphere. Journal of Geophysical Research 89: 11,731–11,748.CrossRefGoogle Scholar
Stuiver, M. and Kra, R., eds. 1986 Calibration Issue. Radiocarbon 28(2B): 805–1030.Google Scholar
Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 1244.CrossRefGoogle Scholar
Stuiver, M., Pearson, G. W. and Braziunas, T. F. 1986 Radiocarbon age calibration of marine samples back to 9000 cal yr BP. In Stuiver, M. and Kra, R., eds., Calibration Issue. Radiocarbon 28(2B): 980–1021.CrossRefGoogle Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, G., van der Plicht, J. and Spurk, M. 1998 INTCAL98 radiocarbon age calibration 24,000–0 cal BP. Radiocarbon, this issue.CrossRefGoogle Scholar
Vogel, J. C. and van der Plicht, J. 1993 Calibration curve for short-lived samples, 1900–3900 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 8791.CrossRefGoogle Scholar