Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T23:49:31.043Z Has data issue: false hasContentIssue false

Statistical Problems in Calibrating Radiocarbon Dates

Published online by Cambridge University Press:  18 July 2016

Herold Dehling
Affiliation:
Mathematics Department, University of Groningen, Blauwborgje 3, 9747 AG, The Netherlands
Johannes van der Plicht
Affiliation:
Centre for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG, The Netherlands
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The transformation of radiocarbon years to calendar years (cal AD/BC) is not straightforward because of past variations in atmospheric 14C content (de Vries 1958; Suess 1970). A calibration curve, y = f(x), transforms each dendrochronologically dated calendar age (x) to a 14C date (y). By inverting this relationship, one can determine the calibrated calendar age of a given sample. In some time intervals, the calibration curve is problematic in that f(x) is not uniquely invertible (Fig. 1); even an exact measurement of y cannot be converted to a single calendar age (see examples in van der Plicht & Mook (1987)).

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Aitchison, T. C., Leese, M., Michczynska, D. J., Mook, W. G., Otlet, R. L., Ottaway, B. S., Pazdur, M. F., van der Plicht, J., Reimer, P. J., Robinson, S. W., Scott, E. M., Stuiver, M. and Weninger, B. 1989 A comparison of methods used for the calibration of radiocarbon dates. in Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 846864.Google Scholar
de Vries, H. 1958 Variation in concentration of radiocarbon with time and location on earth. Kon. Ned. Acad. Wet. Proc. Ser. B 61: 19.Google Scholar
Lindley, D. V. 1965 Introduction to Probability Theory and Statistics from a Bayesian Viewpoint. Cambridge, Cambridge University Press: 2 vols.Google Scholar
Naylor, J. C. and Smith, A. F. M. 1988 An archaeological inference problem. Journal of the American Statistical Association 403: 588595.Google Scholar
Stuiver, M. and Reimer, P. J. 1986 A computer program for radiocarbon age calibration. in Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2B): 10221030.Google Scholar
Suess, H. E. 1970 The three causes of secular 14C fluctuations, their amplitudes and time constants. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium. Stockholm, Almqvist and Viksell: 595605.Google Scholar
van der Plicht, J. and Mook, W. G. 1987 Automatic radiocarbon calibration: Illustrative examples. Palaeohistoria 29: 173182.Google Scholar
van der Plicht, J. and Mook, W. G. 1989 Calibration of radiocarbon ages by computer. in Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 805816.CrossRefGoogle Scholar