Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T10:20:18.198Z Has data issue: false hasContentIssue false

Un ordonnancement dynamique de tâches stochastiques sur un seul processeur

Published online by Cambridge University Press:  15 July 2003

Ali Derbala*
Affiliation:
Université de Blida, Faculté des Sciences, Département de Mathématiques, BP. 270, route de Soumaa, Blida 009, Algérie; aliderbala@yahoo.com.
Get access

Abstract

We show that a particular dynamic priority given to jobs in a multitasks operating system of computers is a deteriorating jobs or a delaying jobs scheduling. Under some assumptions we also show that it is an index rule. To do this, we present the tool of bandit processes to solve stochastic scheduling problems on a single machine.

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Browne, S. et Yechiali, U., Scheduling deteriorating jobs on a single processor. Oper. Res. 38 (1990) 495-498. CrossRef
J.C. Gittins et D.M. Jones, A dynamic index for the sequential Design of experiments, dans Colloquia Mathematica Janes Bolai, Vol. 9, European meeting of statisticians. Budapest, Hungary (1972) 241-266.
Gittins, J.C. et Glazebrook, K.D., Bayesian, On models in stochastic scheduling. J. Appl. Probab. 14 (1977) 556-565. CrossRef
Gittins, J.C., Bandit process and dynamic allocation indices. J. Roy. Statist. Soc. Sect. B 41 (1979a) 148-177.
Gittins, J.C. et Jones, D.M., A dynamic allocation index for the discounted multiarmed bandit problem. Biometrika 66 (1979b) 561-565. CrossRef
J.C. Gittins, Multi armed Bandit allocation indices. John Wiley & Sons (1989).
K.D. Glazebrook, Stochastic scheduling, Ph.D. Thesis. Downing College, Cambridge (1976).
Glazebrook, K.D., Myopic strategies for Bayesian models in stochastic scheduling. Oper. Res. 19 (1982) 160-170.
K.D. Glazebrook, Optimal strategies for families of alternative bandit processes. IEEE Trans. Automat. Control AC-28 (1983) 858-861.
Glazebrook, K.D., Evaluating the effects of machine breakdowns in stochastic scheduling problems. Naval Res. Logist. Quarterly 34 (1987) 319-335. 3.0.CO;2-5>CrossRef
C. Haro et C. Proust, Un ordonnancement équitable par priorités bornées, dans Colloque Méthodes et outils d'aide à la décision, MOAD'92. Béjaia, Algérie (1992) 46-49.
P. Nash, Optimal allocation of resources between research projects, Ph.D. Thesis. Cambridge University (1973).
Nash, P., A generalized bandit problem. J. Roy. Statist. Soc. Sect. B 42 (1980) 165-169.
Robinson, D.R., Algorithms for evaluating the dynamic allocation index. Oper. Res. Lett. 1 (1982) 72-74. CrossRef
K.C. Sevcik, The use of service time distributions in scheduling, Ph.D. Dissertation. Comm. on Information Sciences, University of Chicago (1971).
Sevcik, K.C., Scheduling for minimum total loss using service time distributions. J. Assoc. Comput. Mach. 21 (1974) 66-75. CrossRef
Smith, W.E., Various optimizers for single state production. Naval Res. Logist. Quarterly 3 (1956) 59-66. CrossRef
Weiss, G., Turnpike optimality of Smith's rule in parallel machines stochastic scheduling. Math. Oper. Res. 17 (1992a) 255-270. CrossRef
G. Weiss, A tutorial in stochastic scheduling School of Isy. E. Georgia Tech, Atlanta, GA 30332 (1992b).
Whittle, P., Multi-armed bandits and the Gittins index. J. Roy. Statist. Soc. Sect. B 42 (1980) 143-149.