Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T22:30:56.876Z Has data issue: false hasContentIssue false

Effect of feeding system on unsaturated fatty acid level in milk of dairy cows

Published online by Cambridge University Press:  09 February 2011

E. Morales-Almaráz
Affiliation:
Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Apdo. 13, E-33300 Villaviciosa, Asturias, Spain.
B. de la Roza-Delgado
Affiliation:
Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Apdo. 13, E-33300 Villaviciosa, Asturias, Spain.
A. González
Affiliation:
Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Apdo. 13, E-33300 Villaviciosa, Asturias, Spain.
A. Soldado
Affiliation:
Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Apdo. 13, E-33300 Villaviciosa, Asturias, Spain.
M.L. Rodríguez
Affiliation:
Sociedad Asturiana de Servicios Agropecuarios (ASA), S.L. Sierra de Granda (Polígono Bravo) s/n. E-33199 Granda-Siero, Asturias, Spain.
M. Peláez
Affiliation:
Sociedad Asturiana de Servicios Agropecuarios (ASA), S.L. Sierra de Granda (Polígono Bravo) s/n. E-33199 Granda-Siero, Asturias, Spain.
F. Vicente*
Affiliation:
Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Apdo. 13, E-33300 Villaviciosa, Asturias, Spain.
*
*Corresponding author: fvicente@serida.org

Abstract

In recent years, consumer attitudes toward fat of animal origin have changed owing to findings that some milk fatty acids (FAs) are positive for human health, especially conjugated linolenic acid and n-3 FAs. Accordingly, the manipulation of the fat content and FA composition of cows’ milk via nutritional strategies has been an important target for the dairy industry in many countries. Twenty commercial Holstein–Friesian dairy herds of Asturias (northern Spain) with 1106 dairy cows were examined in order to evaluate milk FA profiles under different management systems. These herds were divided into three groups according to management: (1) indoor herds: cows feeding indoors, (2) mixed herds: indoor management system but with at least 6 h of grazing outdoors and (3) outdoor herds: cows allowed 6–18 h of grazing per day. Milk from the indoor herds exhibited the highest concentration of fat (3.57%; P⩽0.01), protein (3.14%; P⩽0.001), lactose (4.76%; P⩽0.01) and urea (29.4 mg dl−1; P⩽0.01). The milk of outdoor herds had a lower (P⩽0.05) content of short-chain FAs than that of the indoor and mixed herds (10.89 versus 11.52 and 11.35 g 100 g−1 FA). The milk of the indoor herds had higher concentrations of saturated fatty acids (SFA) (67.56 g 100 g−1 FA; P⩽0.001) and palmitic and palmitoleic acids (30.16 and 1.82 g 100 g−1 FA, respectively), while that of the mixed and outdoors herds had higher concentrations of unsaturated fatty acids (UFA) (34.58 g 100 g−1 FA; P⩽0.001) and long-chain FAs, especially stearic (13.89 g 100 g−1 FA; P⩽0.01), vaccenic (2.77 g 100 g−1 FA; P⩽0.001), conjugated linoleic (0.92 g 100 g−1 FA; P⩽0.001) and linolenic (0.42 g 100 g−1 FA; P⩽0.001) acids. Results from this study suggest that the incorporation of forage and pasture in the diet of dairy cows can improve the FA profile of milk.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Álvarez Pinilla, A. and Pérez Méndez, J.A. 2010. Acciones de Futuro para el Sector Lechero en la Cornisa Cantábrica. Centro Nacional de Competencia Tecnológica de la Leche, Gobierno del Principado de Asturias, Oviedo. [In Spanish]Google Scholar
2Kennedy, J., Dillon, P., Delaby, L., Faverdin, P., Stakelum, G., and Rath, M. 2003. Effect of genetic merit and concentrate supplementation on grass intake and milk production with Holstein Friesian dairy cows. Journal of Dairy Science 86:610621.Google Scholar
3World Health Oraganization. 2003. Diet, nutrition and the prevention of chronic diseases. Report of a joint WHO/FAO expert consultation. World Health Organization Technical Reports Series 916. World Health Organization, Geneva, Switzerland.Google Scholar
4Dewhurst, R.J., Scollan, N.D., Lee, M.R.F., Ougham, H.J., and Humphreys, M.O. 2003. Forage breeding and management to increase the beneficial fatty acid content of ruminant products. Proceedings of the Nutrition Society 62:329336.Google Scholar
5Belury, M.A. 2002. Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annual Review of Nutrition 22:505531.Google Scholar
6Bauman, D.E., Mather, I.H., Wall, R.J., and Lock, L.A. 2006. Major advances associated with the biosynthesis of milk. Journal of Dairy Science 89:12351243.Google Scholar
7Dewhurst, R.J., Shingfield, K.J., Lee, M.R.F., and Scollan, N.D. 2006. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology 131:168206.Google Scholar
8Morales-Almaráz, E., Soldado, A., González, A., Martínez-Fernández, A., Domínguez-Vara, I., de la Roza-Delgado, B., and Vicente, F. 2010. Improving the fatty acid profile of dairy cow milk by combining grazing with feeding of total mixed ration. Journal of Dairy Research 77:225230.Google Scholar
9Bendall, J.G. 2001. Aroma compounds of fresh milk from New Zealand cows fed different diets. Journal of Agricultural and Food Chemistry 49:48254832.Google Scholar
10Sukhija, P.S. and Palmquist, D.L. 1988. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. Journal of Agricultural and Food Chemistry 36:12021206.Google Scholar
11Palmquist, D.L. and Jenkins, T.C. 2003. Challenges with fats and fatty acid methods. Journal of Dairy Science 81:32503254.Google Scholar
12Feng, S., Lock, A.L., and Garnsworthy, P.C. 2004. Technical note: a rapid lipid separation method for determining fatty acid composition of milk. Journal of Dairy Science 87:37853788.Google Scholar
13Christie, W.W. 1982. A simple procedure for rapid transmethylation of glycerolipids and cholesterol esters. Journal of Lipid Research 23:10721075.Google Scholar
14Chouinard, P.Y., Corneau, L., Barbano, D.M., Metzger, L.E., and Bauman, D.E. 1999. Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. Journal of Nutrition 129:15791584.Google Scholar
15SAS Institute Inc. 1999. SAS/STATTM User's Guide. Statistical Analysis System, Cary, NC, USA.Google Scholar
16Piñeiro, J. and Díaz, N. 2005. La producción forrajera en la España húmeda. In de la Roza-Delgado, B., Martínez-Fernández, A., and Carballal-Samalea, A. (eds). Producciones agroganaderas: gestión eficiente y conservación del medio natural. Vol II Servicio Regional de Investigación y Desarrollo Agroalimentario, Asturias. p. 425463. [In Spanish].Google Scholar
17Kelsey, J.A., Corl, B.A., Collier, R.J., and Bauman, D.E. 2003. The effect of breed, parity, and stage of lactation on conjugated linolenic acid (CLA) in milk fat from dairy cattle. Journal of Dairy Science 86:25882597.Google Scholar
18Bargo, F., Muller, L.D., Delahoy, J.E., and Cassidy, T.W. 2002. Performance of high producing dairy cows with three different feeding and systems combining pasture and total mixed rations. Journal of Dairy Science 85:29482963.Google Scholar
19Kay, J.K., Roche, J.R., Kolver, E.S., Thomson, N.A., and Baumgard, L.H. 2005. A comparison between feeding systems (pasture and TMR) and the effect of vitamin E supplementation on plasma and milk fatty acid profiles in dairy cows. Journal of Dairy Research 73:322332.Google Scholar
20Latham, M.J., Sutton, J.D., and Sharpe, M.E. 1974. Fermentation and microorganisms in the rumen and the content of fat in the milk of cows given low roughage rations. Journal of Dairy Science 57:803810.Google Scholar
21Bauman, D.E. and Griinari, J.M. 2003. Nutritional regulation of milk fat synthesis. Annual Review of Nutrition 23:203227.Google Scholar
22White, S.L., Bertrand, J.A., Wade, M.R., Washburn, S.P., Green, J.R., and Jenkins, T.C. 2001. Comparison of fatty acid content of milk from Jersey and Holstein cows in early lactation. Journal of Dairy Science 84:22952301.Google Scholar
23Palmquist, D.L., Beaulieu, A.D., and Barbano, D.M. 1993. Feed and animal factors influencing milk fat composition. Journal of Dairy Science 76:17531771.Google Scholar
24Leiber, F., Kreuzer, M., Nigg, D., Wettstein, H.R., and Scheeder, M.R. 2005. A study on the causes for the elevated n-3 fatty acids in cows’ milk of alpine origin. Lipids 40:191202.Google Scholar
25Bauman, D.E., Baumgard, L.H., Corl, B.A., and Griinari, J.M. 2000. Biosynthesis of conjugated linoleic acid in ruminants. Proceedings of the American Society of Animal Science 1999. Available at Web site http://www.asas.org/symposia/9899proc/0937.pdf (accessed October 22, 2010).Google Scholar
26Morales-Almaráz, E., Vicente, F., González, A., Soldado, A., Martínez-Fernández, A., and de la Roza-Delgado, B. 2009. Influence of TMR composition complemented with different grazing times on milk fatty acid. In: Joy, M., Calvo, J.H., Calvete, C., Latorre, M.A., Casasús, I., Bernués, A., Panea, B., Sanz, A., and Balcells, J. (eds). XIII Jornadas sobre Producción Animal AIDA. AIDA, Zaragoza. p. 289291.Google Scholar
27Butler, G., Nielsen, J.H., Slots, T., Seal, C., Eyre, M.D., Sanderson, R., and Leifert, C. 2008. Fatty acid and fat-soluble antioxidant concentrations in milk from high- and low-input conventional and organic systems: seasonal variation. Journal of the Science of Food and Agriculture 88:14311441.Google Scholar
28Toledo, P., Andrén, A., and Björck, L. 2002. Composition of raw milk from sustainable production systems. International Dairy Journal 12:7580.Google Scholar
29Wachira, A.M., Sinclair, L.A., Wilkinson, R.G., Hallett, K., Enser, M., and Wood, J.D. 2000. Rumen biohydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. Journal of Agricultural Science 135:419428.Google Scholar
30Song, M.K. 2000. Fatty acid metabolism by rumen microorganisms. Asian-Australasian Journal of Dairy Science 13:137148.Google Scholar
31Griinari, J.M., Corl, B.A., Lacy, S.H., Chouniard, P.Y., Nurmela, K.V.V., and Bauman, D.E. 2000. Conjugated linoleic acid is synthesized endogenously in lactating cows by delta 9-desaturase. Journal of Nutrition 130:22852291.Google Scholar
32Baumgard, L.H., Matitashvili, E., Corl, B.A., Dwyer, D.A., and Bauman, D.E. 2002. Trans-10:cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. Journal of Dairy Science 85:21552163.Google Scholar
33World Health Organization 1997. Fats and Oils in Human Nutrition, Experts FAO/WHO. FAO Study Feeding and Nutrition 57. FAO, Rome, Italy.Google Scholar
34Cranix, M., Steen, A., Van Laar, H., Van Nespen, T., Martín-Tereso, J., De Baets, B., and Fievez, V. 2008. Effect of lactation stage on the odd- and branched-chain milk fatty acids of dairy cattle under grazing and indoor conditions. Journal of Dairy Science 91:26622677.Google Scholar
35Sutton, J.D. 1989. Altering milk composition by feeding. Journal of Dairy Science 72:28012814.Google Scholar
36Walker, G.P., Dunshea, F.R., and Doyle, P.T. 2004. Effects of nutrition and management on the production and composition of milk fat and protein: a review. Australian Journal of Agricultural Research 55:10091028.Google Scholar