Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T07:20:29.822Z Has data issue: false hasContentIssue false

Sustainable water management in slaughterhouses by cleaner production methods—a review

Published online by Cambridge University Press:  03 April 2020

Ricardo Bailone*
Affiliation:
Federal Inspection Service, São Carlos, SP, Brazil São Paulo State University, Botucatu, SP, Brazil
Roberto Roça
Affiliation:
São Paulo State University, Botucatu, SP, Brazil
Hirla Fukushima
Affiliation:
Federal University of São Carlos, São Carlos, SP, Brazil
Luis Kluwe de Aguiar
Affiliation:
Harper Adams University, Newport, UK
*
Author for correspondence: Ricardo Bailone, E-mail: ricardo.bailone@agricultura.gov.br

Abstract

The demand for water is high in the food industry, particularly during the processing of animal product origin. A more sustainable approach to the use of the water resource is needed to reduce its waste. A systematic literature review was carried out from publications identified according to relevance and timeliness. The aim was to find alternative food processing production methods that considered both recycling and reuse of water in different slaughtering of animals such as cattle, swine, poultry, goat, sheep and fish. Articles which addressed cleaner production methods were selected because of special relevance in water resource management, Poultry processing was considered a special case regarding the recycling and reuse of water. That was due to the volume of water used as well as the level of likely contamination it might pose if reused. Wastewater can be largely reduced by adopting changes in practices, such as plant layout; materials used; drainage systems using dedicated separation of effluents and shaded area at reception with ventilation and sprinkles.

Type
Review Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrodefesa (Agência Goiânia de Defesa Agropecuária) (2013) Gerência de inspeção produtos de origem animal: normas de construção abatedouro de aves. http://www.agrodefesa.go.gov.br/index.php/publicacoes/insp-areas-atuacao/88-abatedouro-de-aves/file (Accessed 13 June 2019).Google Scholar
Alcalde-Sanz, L and Gawlik, BM (2014) Water Reuse in Europe: Relevant guidelines, needs for and barriers to innovation. https://ec.europa.eu/jrcv (Accessed 13 June 2019).Google Scholar
Amorim, AKB, De Nardi, IR and Del Nery, V (2007) Water conservation and effluent minimization: case study of a poultry slaughterhouse. Resources Conservation & Recycling 51, 93100.CrossRefGoogle Scholar
Araújo, C (2017) Consumo de água em frigoríficos de pescado pode cair até quase 50%. https://www.embrapa.br/busca-de-noticias/-/noticia/25135189/consumo-de-agua-em-frigorificos-de-pescado-pode-cair-ate-quase-50 (Accessed 13 June 2019).Google Scholar
Bailone, RL and Roça, RO (2017) Trends in processing broiler: rational use of water. Engenharia Sanitáia e Ambiental 22, 6572.CrossRefGoogle Scholar
Bailone, RL, Roça, RO, De Aguiar, L and Harris, MJ (2016) Main technical differences in the processing of broilers: a comparison between slaughterhouses in Brazil and UK. Journal of Agriculture Science and Technology A 6, 136142. https://doi.org/10.17265/2161-6256/2016.02.007Google Scholar
Barrera, M, Gilbride, KA, Mccarthy, LH, Laursen, AE, Bostan, V and Pushchak, R (2012) Photolytic treatment of organic constituents and bacterial pathogens in secondary effluent of synthetic slaughterhouse wastewater. Chemical Engineering Research and Design 90, 13351350.CrossRefGoogle Scholar
Bellaver, C and Oliveira, PA (2009) Balanço da água nas cadeias de aves e suínos. Available at https://pt.engormix.com/avicultura/artigos/balanco-agua-aves-suinos-t36841.htm (accessed in 30 June 2019).Google Scholar
Bixio, D and Wintgens, T (2006) Water Reuse System Management Manual—AQUAREC. Luxembourg: EC.Google Scholar
Brasil (1995) Ministério da Agricultura, Pecuária e Abastecimento. Portaria n°711, de 1° de novembro de 1995. Aprova “Normas técnicas de instalações e equipamentos para abate e industrialização de suínos”. Publicado em 03 de novembro de 1995 no Diário Oficial da União, Brasília, Brasil. https://www.defesa.agricultura.sp.gov.br/legislacoes/portaria-mapa-711-de-01-11-1995,755.html (Accessed 13 June 2019).Google Scholar
Brasil (1998) Ministério da Agricultura, Pecuária e Abastecimento. Portaria n°210, de 10 de novembro de 1998. Aprova “Regulamento técnico da inspeção tecnológica e higiênico-sanitária de carne de aves.” Publicado em 26 de novembro de 1998 no Diário Oficial da União, Brasília, Brasil. https://docplayer.com.br/138792-Portaria-n-210-de-10-de-novembro-de-1998.html (Accessed 13 June 2019).Google Scholar
Bustillo-Lecompte, CF and Mehrvar, M (2015) Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. Journal of Environmental Management 161, 287302.CrossRefGoogle ScholarPubMed
Bustillo-Lecompte, CF, Mehrvar, M and Quiñones-Bolaños, E (2014) Cost-effectiveness analysis of TOC removal from slaughterhouse wastewater using combined anaerobic–aerobic and UV/H2O2 processes. Journal of Environmental Management 134, 145152.CrossRefGoogle ScholarPubMed
Cetesb (2006) Companhia Ambiental do Estado De São Paulo Guia técnico ambiental de abates (bovino e suíno). São Paulo, 98p. http://www.cetesb.sp.gov.br (Accessed 13 June 2019).Google Scholar
CODEX (2001) Codex Alimentarius Commission. Codex Committee on Food Hygiene. Thirty-Fourth Session: Proposed Draft Guidelines for the Hygienic Reuse of Processing Water in Food Plants. Bangkok, 8–13 October 2001.Google Scholar
Coskun, T, Debik, E, Kabuk, HA, Manav Demir, N, Basturk, I, Yildirim, B and Kucuk, S (2016) Treatment of poultry slaughterhouse wastewater using a membrane process, water reuse, and economic analysis. Desalination and Water Treatment 57, 49444951.CrossRefGoogle Scholar
CPTS. Centro de Promocíon de Tecnologías Sostenibles (Bolívia) (2009 a) Guía Técnica de Producción Más Limpia para Mataderos de Bovinos. La Paz (Bolivia), 208p. http://www.cpts.org/capacitacion.php (Accessed 13 June 2019).Google Scholar
CPTS. Centro de Promocíon de Tecnologías Sostenibles (Bolívia) (2009 b) Guía Técnica de Producción Más Limpia para Mataderos de Porcinos. La Paz (Bolivia), 177p. http://www.cpts.org/capacitacion.php (Accessed 13 June 2019).Google Scholar
Dababat, SS and Shaheen, HQ (2019) Biogas production using slaughterhouse wastewater co-digested with domestic sludge. Journal of Civil Engineering and Construction 8, 3440.CrossRefGoogle Scholar
De Aguiar Camargo, J, Henkes, JA and De Fátima Rossato, I (2016) Avaliação do consumo de água em abatedouro de aves visando a redução e ou reutilização de água. Revista Gestão & Sustentabilidade Ambiental 5, 675693.CrossRefGoogle Scholar
Eckhard, CL (2014) Aplicação do método de Produção Mais Limpa: estudo de caso em uma indústria de candies (Master's thesis). Available at https://www.univates.br/bdu/bitstream/10737/608/1/2014ClaudioLuizEckhard.pdf (Accessed 1 October 2019).Google Scholar
Environment Agency (2009 a) The Red Meat Processing (Cattle, Sheep and Pigs) Sector (EPR 6.12). http://cdn.environment-agency.gov.uk/geho0209bpja-e-e.pdf (Accessed 13 June 2019).Google Scholar
Environment Agency (2009 b) Treating and Processing Poultry (EPR 6.11). http://cdn.environmentagency.gov.uk/geho0209bpiz-e-e.pdf (Accessed 13 June 2019).Google Scholar
Ferraciolli, LMR, LD, Luiz, DB and Naval, LP (2017) Potential for reuse of effluent from fish-processing industries. Ambiente & Água - An Interdisciplinary Journal of Applied Science 12, 730742. http://dx.doi.org/10.4136/ambi-agua.2045Google Scholar
Forlani, JPM, Medeiros, M and Léo, LFR (2004) O potencial de reuso de água (efluentes tratados) em um matadourofrigorífico. In Federal University of São Carlos (ed.), Simpósio da engenharia ambiental, 1., 2004, São Carlos. Anais... São Carlos: Escola de Engenharia de São Carlos, pp. 8188.Google Scholar
Fronza, N (2004) Estudos das potencialidades do reúso de água em uma indústria frigorífica. 81f. (Master Degree)—Programa de Pós-graduação em Engenharia de Alimentos. Florianópolis, Universidade Federal de Santa Catarina. https://core.ac.uk/download/pdf/30367817.pdf (Accessed 13 June 2019).Google Scholar
Garg, S and Chaudhry, S (2017) Treatment of wastewater of food industry by membrane bioreactor. IJRASET 4, 153.Google Scholar
Gerbens-Leenes, PW, Mekonnen, MM and Hoekstra, AY (2013) The water footprint of poultry, pork and beef: a comparative study in different countries and production systems. Water Resources and Industry 1, 2536. https://doi.org/10.1016/j.wri.2013.03.001CrossRefGoogle Scholar
Goedert, ML (2012) Estudo da viabilidade do aproveitamento de águas pluviais em diferentes indústrias do Oeste do Paraná. 2012. 60f. (Graduation Conclusion). Universidade Tecnológica Federal do Paraná, Medianeira. http://repositorio.roca.utfpr.edu.br/jspui/bitstream/1/1089/1/MD_COENP_2012_1_05.pdf (Accessed 13 June 2019).Google Scholar
Granada, CE, Hasan, C, Marder, M, Konrad, O, Vargas, LK, Passaglia, LM and Sperotto, RA (2018) Biogas from slaughterhouse wastewater anaerobic digestion is driven by the archaeal family Methanobacteriaceae and bacterial families Porphyromonadaceae and Tissierellaceae. Renewable Energy 118, 840846. https://doi.org/10.1016/j.renene.2017.11.077CrossRefGoogle Scholar
Hamilton, AJ, Boland, AM, Stevens, D, Kelly, J, Radcliffe, J, Ziehrl, A and Paulin, B (2005) Position of the Australian horticultural industry with respect to the use of reclaimed water. Agricultural Water Management 71, 181209.CrossRefGoogle Scholar
Hernández, SC, Jiménez, LD and García, JAB (2018) Potential of energy production from slaughterhouse wastewater. Interciencia 43, 558565. http://www.redalyc.org/articulo.oa?id=33957744004 (Accessed 13 June 2019).Google Scholar
Judd, S (2010) The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment. Oxford, UK: Elsevier.Google Scholar
Kist, LT, Moutaqi, SE and Machado, EL (2009) Cleaner production in the management of water use at a poultry slaughterhouse of Vale do Taquari, Brazil: a case study. Journal of Cleaner Production 17, 12001205.CrossRefGoogle Scholar
Krieger, EIF and Rodriguez, MTR (2006) Balanço hídrico em um matadouro de suínos e avaliação do uso da água em pocilgas de espera. XXX Congreso Interamericano de Ingenieria Sanitaria y Ambiental, 2006, Punta del Este. Anais do XXX Congreso Interamericano de Ingenieria Sanitaria y Ambiental, 2006. http://www.bvsde.paho.org/bvsaidis/uruguay30/BR10560_Lima.pdf (Accessed 13 June 2019).Google Scholar
Kupusovic, T, Midzic, S, Silajdzic, I and Bjelavac, J (2007) Cleaner production measures in small-scale slaughterhouse industry-case study in Bosnia and Herzegovina. Journal of Cleaner Production 15, 378383.CrossRefGoogle Scholar
Langone, M, Ferrentino, R, Freddi, F and Andreottola, G (2019) Anaerobic digestion of blood serum water integrated in a valorization process of the bovine blood treatment. Biomass and Bioenergy 120, 18.CrossRefGoogle Scholar
Lee, SD and Lee, VS (2017) After Rio: the new environmental challenge. In Principles of Sustainable Development. UK: Routledge, pp. 6982.CrossRefGoogle Scholar
Levine, DA and Asano, T (2002) Water reclamation, recycling and reuse in industry. In Lens, P, Hulshoff Pol, L, Wilderer, P and Asano, T (eds), Water Recycling and Resource Recovery in Industry: Analysis, Technologies and Implementation. IWA Publishing, pp. 2952.Google Scholar
Marcos, AC, Al-Kassir, A, Cuadros, F and Yusaf, T (2017) Treatment of slaughterhouse waste water mixed with serum from lacteal industry of extremadura in Spain to produce clean energy. Energies 10, 765. https://doi.org/10.1016/j.biombioe.2018.10.015CrossRefGoogle Scholar
Martí-Herrero, J, Alvarez, R and Flores, T (2018) Evaluation of the low technology tubular digesters in the production of biogas from slaughterhouse wastewater treatment. Journal of Cleaner Production 199, 633642.CrossRefGoogle Scholar
Martins, MVL, Astorga, OAM and Silveira, JL (2006) Conservação de água na indústria. Ciências Exatas 12, 107113.Google Scholar
Matsumura, EM and Mierzwa, JC (2008) Water conservation and reuse in poultry processing plant-case study. Resources, Conservation and Recycling 52, 835842.CrossRefGoogle Scholar
Mekonnen, MM and Hoekstra, AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15, 401415.CrossRefGoogle Scholar
Napoli, MAS (2015) Consumo de água na industrialização da Tilápia: estudo de caso do oeste do Paraná. 39 f. Dissertação de mestrado (Master degree). Pós-Graduação em Desenvolvimento Rural Sustentável do Centro de Ciências Agrárias da Universidade Estadual do Oeste do Paraná (Unioeste). http://tede.unioeste.br:8080/tede/handle/tede/1505 (Accessed 13 June 2019).Google Scholar
OECD (2019) Navigating pathways to reform water policies in agriculture. OECD Food, Agriculture and Fisheries Papers. No. 128. OECD.Google Scholar
Oliveira, P and Bellaver, C (2009) Balanço da água nas cadeias de aves e suínos. Agricultura Industrial 10, 3944.Google Scholar
Ozturk, E, Koseoglu, H, Karaboyaci, M, Yigit, NO, Yetis, U and Kitis, M (2016) Sustainable textile production: cleaner production assessment/eco-efficiency analysis study in a textile mill. Journal of Cleaner Production 138, 248263.CrossRefGoogle Scholar
Pacheco, JWF and Yamanaka, HT (2006) Guia técnico ambiental de abate (bovino e suíno)—série P+L. 98p. São Paulo: CETESB. GOVERNO DO ESTADO DE SÃO PAULO. 2008. Secretaria do Meio Ambiente. CETESB - Companhia de Tecnologia de Saneamento Ambiental. FIESP—Federação das Indústrias do Estado de São Paulo. https://cetesb.sp.gov.br/consumosustentavel/wp-content/uploads/sites/20/2013/11/abate.pdf (Accessed 13 June 2019).Google Scholar
Rahim, R and Raman, AAA (2015) Cleaner production implementation in a fruit juice production plant. Journal of Cleaner Production 101, 215221.CrossRefGoogle Scholar
RIO GRANDE DO SUL (2016) Secretaria da Agricultura, Pecuária e Irrigação. RESOLUÇÃO DIPOA/DDA/SEAPI n° 02/2016. Estabelece normas técnicas relativas às instalações e equipamentos para funcionamento de matadouros e frigoríficos de ovinos e caprinos e dá outras providências. https://www.agricultura.rs.gov.br/upload/arquivos/201608/25141014-matadouros-frigorificos-de-ovinos-e-caprinos.pdf (Accessed 13 June 2019).Google Scholar
Rockström, J and Karlberg, L (2010) The Quadruple Squeeze: defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene. Ambio 39, 257265.CrossRefGoogle ScholarPubMed
Rockström, J, Williams, J, Daily, G, Noble, A, Matthews, N, Gordon, L and de Fraiture, C (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 417.CrossRefGoogle ScholarPubMed
Silva, JLA (2007) Avaliação da gestão do uso e reuso de água em abatedouro de aves. 129f. (Master Degree)—Curso de Mestrado em Gestão e Políticas Ambientais, Universidade Federal de Pernambuco, Recife, 2007. https://repositorio.ufpe.br/handle/123456789/6441 (Accessed 13 June 2019).Google Scholar
Sivapalan, M, Konar, M, Srinivasan, V, Chhatre, A, Wutich, A, Scott, CA and Rodríguez-Iturbe, I (2014) Socio-hydrology: use-inspired water sustainability science for the Anthropocene. Earth's Future 2, 225230.CrossRefGoogle Scholar
Souza, FKB, Paradela, LJF and Pizarro, JV (2013) Perícia ambiental de um matadouro da região nordeste do Estado do Pará. Amazônia em Foco 1, 198219. http://revista.fcat.edu.br/index.php/path/article/view/71/42 (Accessed 13 June 2019).Google Scholar
Theobald, D (2017) Challenges & Trends in Food Industry Water Management. Water Tecnology. Available in https://www.watertechonline.com/food-industry-water-management/ (Accessed 7 October 2019).Google Scholar
Thompson, M (2005) Port Macquarie's urban reclaimed water supply scheme. Proceedings IPWEA NSW Division Annual Conference.Google Scholar
UK. Environmental Tecnology Best Practice Programme (2000) Reducing Water and effluent Costs in Red meat Abattoirs. Good Practice Guide—GG234. https://envirowise.gov.uk (Accessed 13 June 2019).Google Scholar
UNEP—United Nations Environment Programme & Danish Environmental Protection Agency (2000) Cleaner Production Assessment in Meat Processing. Dinamarca, 83p. http://www.unep.fr/shared/publications/pdf/2482-CPmeat.pdf (Accessed 13 June 2019).Google Scholar
Unfried, LC and Yoshi, CVH (2012) Sustentabilidade no abate e processamento de aves. FACESI em Revista 4, 114. https://docplayer.com.br/14379729-Sustentabilidade-no-abate-e-processamento-de-aves.html (Accessed 13 June 2019).Google Scholar
Urase, T (2016) Improvement of Membrane Bioreactor Operations for Color and Oil Removal from Wastewater (Doctoral dissertation). Tokyo University of Technology, Japan.Google Scholar
USEPA. UNITED STATES-Environmental Protection Agency (2004) Guidelines for Water Reuse. Washington, D. C. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=129543 (Accessed 13 June 2019).Google Scholar
Valta, K, Moustakas, K, Sotiropoulos, A, Malamis, D and Haralambous, KJ (2016) Adaptation measures for the food and beverage industry to the impact of climate change on water availability. Desalination and Water Treatment 57, 23362343.CrossRefGoogle Scholar
Wang, S, Hawkins, GL, Kiepper, BH and Das, KC (2018) Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production. Renewable Energy 126, 552562.CrossRefGoogle Scholar
WHO. World Health Organization (2006) Guidelines for the safe use of wastewater, excreta and greywater. Washington, D. C. https://www.who.int/water_sanitation_health/publications/gsuweg4/en/ (Accessed 13 June 2019).Google Scholar
WRAP. Waste & Resources Action Programme (2013) Water Minimisation in the Food and Drink Industry—Business Resource Efficiency Guide. http://www.wrap.org.uk/sites/files/wrap/Water%20Minimisation%20in%20FD%20Industry.pdf (Accessed 13 June 2019).Google Scholar
Yazdani, M, Ebrahimi-Nik, M, Heidari, A and Abbaspour-Fard, MH (2019) Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge. Renewable Energy 135, 496501. https://doi.org/10.1016/j.renene.2018.12.019CrossRefGoogle Scholar