Article contents
AXIOMS FOR DETERMINATENESS AND TRUTH
Published online by Cambridge University Press: 01 August 2008
Abstract
A new formal theory DT of truth extending PA is introduced, whose language is that of PA together with one new unary predicate symbol T (x), for truth applied to Gödel numbers of suitable sentences in the extended language. Falsity of x, F(x), is defined as truth of the negation of x; then, the formula D(x) expressing that x is the number of a determinate meaningful sentence is defined as the disjunction of T(x) and F(x). The axioms of DT are those of PA extended by (I) full induction, (II) strong compositionality axioms for D, and (III) the recursive defining axioms for T relative to D. By (II) is meant that a sentence satisfies D if and only if all its parts satisfy D; this holds in a slightly modified form for conditional sentences. The main result is that DT has a standard model. As an improvement over earlier systems developed by the author, DT meets a number of leading criteria for formal theories of truth that have been proposed in the recent literature and comes closer to realizing the informal view that the domain of the truth predicate consists exactly of the determinate meaningful sentences.
- Type
- Research Article
- Information
- The Review of Symbolic Logic , Volume 1 , Special Issue 2: Mathematical Methods in Philosophy , August 2008 , pp. 204 - 217
- Copyright
- Copyright © Association for Symbolic Logic 2008
References
BIBLIOGRAPHY
- 25
- Cited by