Article contents
SET SIZE AND THE PART–WHOLE PRINCIPLE
Published online by Cambridge University Press: 20 September 2013
Abstract
Gödel argued that Cantor’s notion of cardinal number was uniquely correct. More recent work has defended alternative “Euclidean”' theories of set size, in which Cantor’s Principle (two sets have the same size if and only if there is a one-to-one correspondence between them) is abandoned in favor of the Part–Whole Principle (if A is a proper subset of B then A is smaller than B). Here we see from simple examples, not that Euclidean theories of set size are wrong, nor merely that they are counterintuitive, but that they must be either very weak or in large part arbitrary and misleading. This limits their epistemic usefulness.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2013
References
BIBLIOGRAPHY
- 7
- Cited by