Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T10:30:16.427Z Has data issue: false hasContentIssue false

Pain management in older people

Published online by Cambridge University Press:  13 May 2010

Gary McCleane*
Affiliation:
Rampark Pain Centre, Lurgan, Northern Ireland
*
Address for correspondence: Dr Gary McCleane, Consultant in Pain Management, Rampark Pain Centre, 2 Rampark, Lurgan BT66 7JH, Northern Ireland, UK. Email: gary@mccleane.freeserve.co.uk

Summary

At times providing pain relief in elderly patients can prove troublesome. Their tolerance and perception of pain can differ from that of younger patients, while the incidence of pain is above that found in those of less advanced years.

Conventional approaches to providing pain relief can be successful, but the tolerance to the side-effects of those drugs used to provide pain relief can be less. Furthermore, polypharmacy can have implications for the range of analgesic drugs that can be considered. Fortunately there are an increasing range of medicinal products with reduced potential for side-effects that can be considered when treating older patients with pain.

Type
Clinical geriatrics section
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Verdu, E, Ceballos, D, Vilches, JJ, Navarro, X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst 2000; 5: 191208.CrossRefGoogle ScholarPubMed
2Bergman, E, Johnson, H, Xhang, X, Hokfelt, T, Ulfhake, B. Neuropeptides and neurotrophin receptor mRNAs in primary sensory neurons of aged rats. J Comp Neurol 1996; 11: 303–19.3.0.CO;2-6>CrossRefGoogle Scholar
3Wong, DF, Wagner, HN, Dannals, RF. Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 1984; 226: 1393–96.CrossRefGoogle ScholarPubMed
4Laporte, AM, Doyen, C, Nevo, IT. Autoradiographic mapping of serotonin 5HT1A, 5HT1D, 5HT2A and 5HT3 receptors in the aged human spinal cord. J Chem Neuroanat 1996; 11: 6775.CrossRefGoogle ScholarPubMed
5Barili, P, De Carolis, G, Zaccheo, D, Amenta, F. Sensitivity to ageing of the limbic dopaminergic system: a review. Mech Ageing Dev 1998; 106: 5792.CrossRefGoogle ScholarPubMed
6Pakkenberg, B, Gundersen, HJ. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 1997; 384: 312–20.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
7Kim, KJ, Moriyama, K, Han, KR, Sharma, M, Han, X, Xie, GX, Palmer, PP. Differential expression of the regulator of G protein signalling RGS9 protein in nociceptive pathways of different age rats. Brain Res Dev 2005; 160: 2839.CrossRefGoogle ScholarPubMed
8Finkel, JC, Besch, VG, Hergen, A, Kakareka, J, Pohida, T, Melzer, JM, Koziol, D, Wesley, R, Quezado, ZM. Effects of aging on current vocalization threshold in mice measured by a novel nociceptive assay. Anesthesiology 2006; 105: 360–69.CrossRefGoogle Scholar
9Gagliese, L, Melzack, R. Neurosci Biobehav Rev 2000; 24: 843–54.CrossRefGoogle Scholar
10Jourdan, D, Boghossian, S, Alloui, A, Veyrat-Durebex, C, Coudore, MA, Eschalier, A, Alliot, J. Age-related changes in nociception and effect of morphine in the Lou rat. Eur J Pain 2000; 4: 291300.CrossRefGoogle ScholarPubMed
11Cruce, WL, Lovell, JA, Crisp, T, Stuesse, SL. Effect of aging on the substance P receptor, NK-1, in the spinal cord in rats with peripheral nerve injury. Somatosens Mot Res 2001; 18: 6675.Google ScholarPubMed
12Ririe, DG, Vernon, TL, Tobin, JR, Eisenach, JC. Age dependent responses to thermal hyperalgesia and mechanical allodynia in a rat model of acute postoperative pain. Anesthesiology 2003; 99: 443–48.CrossRefGoogle Scholar
13Gagliese, L, Melzack, R. Age differences in the response to the formalin test in rats. Neurobiol Aging 1999; 20: 699707.CrossRefGoogle Scholar
14Onodera, K, Sakurada, S, Furuta, S, Yonezawa, A, Hayashi, T, Honma, I, Miyazaki, S. Age-related differences in forced walking stress-induced analgesia in mice. Drugs Exp Clin Res 2001; 27: 193–98.Google ScholarPubMed
15Iwata, K, Fukuoka, T, Kondo, E, Tsuboi, Y, Tashiro, A, Noguchi, K, Masuda, Y, Morimoto, T, Kanda, K. Plastic changes in nociceptive transmission of the rat spinal cord with advancing age. J Neurophysiol 2002; 10: 1086–93.CrossRefGoogle Scholar
16Wang, Y, Mitchell, J, Moriyama, K, Kim, KJ, Sharma, M, Xie, GX, Palmer, PP. Age-dependent morphine tolerance development in the rat. Anesth Analg 2005; 100: 1733–39.CrossRefGoogle ScholarPubMed
17Sternberg, WF, Ritchie, J, Mogil, JS. Qualitative sex differences in kappa-opioid analgesia in mice are dependent on age. Neurosci Lett 2004; 363: 178–81.CrossRefGoogle ScholarPubMed
18Gibson, SJ. Pain and aging: the pain experience over the adult lifespan. In Proceedings of the 10th World Congress on Pain, IASP Press, Seattle, 2003.Google Scholar
19Zheng, Z, Gibson, SJ, Khalil, Z, Helme, RD, McMeekin, JM. Age related differences in the time course of capsaicin induced hyperalgesia. Pain 2000; 85: 5158.CrossRefGoogle ScholarPubMed
20Lasch, H, Castell, DO, Castell, JA. Evidence for diminished visceral pain with aging: studies using graded intraesophageal balloon distension. Am J Physiol 1997; 272: G13.Google ScholarPubMed
21Gibson, SJ, Voukelatos, X, Ames, D, Flicker, L, Helme, RD. An examination of pain perception and cerebral event related potentials following carbon dioxide laser stimulation in patients with Alzheimer's disease and age-matched control volunteers. Pain Res Manag 2001; 6: 126–32.CrossRefGoogle ScholarPubMed
22Harkins, SW. Effects of aged and interstimulus interval on the brainstem auditory evoked potential. Int J Neurosci 1981; 15: 107–18.CrossRefGoogle ScholarPubMed
23Lautenbacher, S, Kunz, M, Strate, P, Nielsen, J, Arendt-Nielsen, L. Age effects on pain thresholds, temporal summation and spatial summation of heat and pressure pain. Pain 2005; 115: 410–18.CrossRefGoogle ScholarPubMed
24Edwards, RR, Fillingham, RB, Ness, TJ. Age-related differences in endogenous pain modulation: a comparison of diffuse noxious inhibitory controls in healthy older and younger adults. Pain 2003; 101: 155–65.CrossRefGoogle ScholarPubMed
25Yunis, MB, Holt, GS, Masi, AT, Aldag, JC. Fibromyalgia syndrome among the elderly. Comparisons with younger patients. J Am Geriatr Soc 1988; 36: 987–95.CrossRefGoogle Scholar
26Brattberg, G, Parker, MG, Thorslund, M. The prevalence of pain among the oldest in Sweden. Pain 1996; 67: 2934.CrossRefGoogle ScholarPubMed
27Reyes-Gibby, CC, Aday, LA, Todd, KH, Cleeland, CS, Anderson, KO. Pain in aging community-dwelling adults in the United States: non-Hispanic whites, non-Hispanic blacks, and Hispanics. J Pain 2007; 8: 7584.CrossRefGoogle ScholarPubMed
28Bressler, HB, Keyes, WJ, Rochon, PA, Badley, E. The prevalence of low back pain in the elderly. A systematic review of the literature. Spine 1999; 24: 1813–19.CrossRefGoogle ScholarPubMed
29Dionne, CE, Dunn, KM, Croft, PR. Does back pain prevalence really decrease with increasing age? A systematic review. Age Ageing 2006; 35: 229–34.CrossRefGoogle ScholarPubMed
30Salaffi, F, Carotti, M, Stancati, A, Grassi, W. Health-related quality of life in older adults with symptomatic hip and knee osteoarthritis: a comparison with matched healthy controls. Aging Clin Exp Res 2005; 17: 253–54.CrossRefGoogle ScholarPubMed
31Buntin-Mushock, C, Phillip, L, Moriyama, K, Palmer, PP. Age-dependent opioid escalation in chronic pain patients. Anesth Analg 2005; 100: 1740–45.CrossRefGoogle ScholarPubMed
32Scherder, EJ, Bouma, A. Is decreased use of analgesics in Alzheimer disease due to change in the affective component of pain? Alzheimer Dis Assoc Disord 1997; 11: 171–74.CrossRefGoogle ScholarPubMed
33Pickering, G, Jourdan, D, Dubray, C. Acute versus chronic pain treatment in Alzheimer's disease. Eur J Pain 2006; 10: 379–84.CrossRefGoogle ScholarPubMed
34Scherder, EJ, Slaets, J, Deijen, JB, Gorter, Y, Ooms, ME, Ribbe, M, Vuijk, PJ, Feldt, K, van de Valk, M, Bouma, A, Sergeant, JA. Pain assessment in patients with possible vascular dementia. Psychiatry 2003; 66: 133–45.CrossRefGoogle ScholarPubMed
35Cornali, C, Franzoni, S, Gatti, S, Trabucchi, M. Diagnosis of chronic pain caused by osteoarthritis and prescription of analgesics in patients with cognitive impairment. J Am Med Dir Assoc 2006; 7: 15.CrossRefGoogle ScholarPubMed
36Davies, PS, Galer, BS. Review of lidocaine 5% patch studies in the treatment of postherpetic neuralgia. Drugs 2004; 64: 937–47.CrossRefGoogle ScholarPubMed
37Gammaitoni, AR, Davis, MW. Pharmacokinetics and tolerability of lidocaine 5% patch with extended dosing. Ann Pharmacother 2002; 36: 236–40.CrossRefGoogle ScholarPubMed
38Habib, AS, Polascik, TJ, Weizer, AZ, White, WD, Moul, JW, ElGasim, MA, Gan, TJ. Lidocaine patch for postoperative analgesia after radical retropubic prostatectomy. Anesth Analg 2009; 108: 1950–53. This is the first study to confirm the clinical impression that topical application of lidocaine patch reduces post-operative pain.CrossRefGoogle ScholarPubMed
39Saber, AA, Elgamal, AH, Rao, AJ et al. Early experience with lidocaine patch for postoperative pain control after laparoscopic ventral hernia repair. Int J Surg 2009; 7: 3638.CrossRefGoogle ScholarPubMed
40Affaitati, G, Fabrizio, A, Savini, A, Lerza, R, Tafuri, E, Costantini, R, Lapenna, D, Giamberardino, MA. A randomized, controlled study comparing a lidocaine patch, a placebo patch, and anaesthetic injection for treatment of trigger points in patients with myofascial pain syndrome: evaluation of pain and somatic pain thresholds. Clin Ther 2009; 31: 705–20.CrossRefGoogle Scholar
41Gimbel, J, Linn, R, Hale, M, Nicholson, B. Lidocaine patch treatment in patients with low back pain: results of an open-label, non-randomized pilot study. Am J Ther 2005; 12: 311–19.CrossRefGoogle Scholar
42Gammaitoni, AR, Galer, BS, Onawola, R, Jensen, MP, Argoff, CE. Lidocaine patch 5% and its positive impact on pain qualities in osteoarthritis: results of a pilot 2-week open label study using the Neuropathic Pain Scale. Curr Med Res Opin 2004; 20: S1319.CrossRefGoogle ScholarPubMed
43Duarte, ID, Lorenzetti, BB, Ferreira, SH. Acetylcholine induces peripheral analgesia by the release of nitric oxide. In Moncada, S, Higgs, A (eds), Nitric Oxide from L-Arginine. A Bioregulatory System. Elsevier, Amsterdam, 1990; pp. 165–70.Google Scholar
44Feelisch, M, Noack, EA. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 1987; 139: 1930.CrossRefGoogle ScholarPubMed
45Knowles, RG, Palacios, M, Palmer, RM, Moncada, S. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 1989; 86: 5159–62.CrossRefGoogle ScholarPubMed
46Berrazueta, JR, Fleitas, M, Salas, E, Amado, JA, Poveda, JJ, Ochoteco, A, Sánchez de Vega, MJ, Ruiz de Celis, G. Local transdermal glyceryl trinitrate has an anti-inflammatory action on thrombophlebitis induced by sclerosis of leg varicose veins. Angiology 1994; 45: 347–51.CrossRefGoogle ScholarPubMed
47Berrazueta, JR, Losada, A, Poveda, J, Ochoteco, A, Riestra, A, Salas, E, Amado, JA. Successful treatment of shoulder pain syndrome due to supraspinatus tendonitis with transdermal nitroglycerin. A double blind study. Pain 1996; 66: 6367.CrossRefGoogle ScholarPubMed
48Paoloni, JA, Appleyard, RC, Nelson, J, Murrell, GA. Topical nitric oxide application in the treatment of chronic extensor tendinosis at the elbow: a randomized, double-blind, placebo-controlled clinical trial. Am J Sports Med 2003; 31: 915–20.CrossRefGoogle Scholar
49Paoloni, JA, Appleyard, RC, Nelson, J, Murrell, GA. Topical glyceryl trinitrate treatment of chronic non-insertional Achilles tendinopathy. A randomized, double-blind, placebo-controlled trial. J Bone Joint Surg Am 2004; 86: 916–22.CrossRefGoogle Scholar
50Paoloni, JA, Appleyard, RC, Nelson, J, Murrell, GA. Topical glyceryl trinitrate application in the treatment of chronic supraspinatus tendinopathy: a randomized, double-blinded, placebo-controlled clinical trial. Am J Sports Med 2005; 33: 806–13.CrossRefGoogle ScholarPubMed
51McCleane, GJ, McLaughlin, M. The addition of GTN to capsaicin cream reduces the discomfort associated with application of capsaicin alone. Pain 1998; 78: 149–52.CrossRefGoogle ScholarPubMed
52Walker, RJ, McCleane, GJ. The addition of glyceryl trinitrate to capsaicin cream reduces the thermal allodynia associated with the application of capsaicin alone in humans. Neurosci Lett 2002; 323: 7880.CrossRefGoogle ScholarPubMed
53McCleane, GJ. The analgesic efficacy of topical capsaicin is enhanced by glyceryl trinitrate in painful osteoarthritis: a randomized, double-blind, placebo controlled study. Eur J Pain 2000; 4: 355–60.CrossRefGoogle ScholarPubMed
54Dong, X-D, Svensson, P, Cairns, BE. The analgesic action of topical diclofenac may be mediated through peripheral NMDA receptor antagonism. Pain 2009; 147: 3645. This study shows an additional peripheral mode of action of the NSAID diclofenac.CrossRefGoogle ScholarPubMed
55Cairns, BE, Svensson, P, Wang, K, Hupfeld, S, Graven-Nielsen, T, Sessle, BJ, Berde, CB, Arendt-Nielsen, L. Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle. J Neurophysiol 2003; 90: 2098–105.CrossRefGoogle ScholarPubMed
56Cairns, BE, Dong, XD. The role of peripheral glutamate and glutamate receptors in muscle pain. J Musculoskeletal Pain 2008; 16: 8591.CrossRefGoogle Scholar
57Alves, DP, Tatsuo, MA, Leite, R, Duarte, ID. Diclofenac-induced peripheral antinociception is associated with ATP-sensitive K+ channels activation. Life Sci 2004; 74: 2577–91.CrossRefGoogle ScholarPubMed
58Ortiz, MI, Torres-López, JE, Castañeda-Hernández, G, Rosas, R, Vidal-Cantú, GC, Granados-Soto, V. Pharmacological evidence for the activation of K (+) channels by diclofenac. Eur J Pharmacol 2002; 438: 8591.CrossRefGoogle ScholarPubMed
59Vestergaard, P, Rejnmark, L, Mosekilde, L. Fracture risk associated with the use of morphine and opiates. J Intern Med 2006; 260: 7687.CrossRefGoogle ScholarPubMed
60Lunn, MP, Hughes, RA, Wiffen, PJ. Duloxetine for treating painful neuropathy or chronic pain. Cochrane Database Syst Rev 2009; 4: CD007115.Google Scholar
61Arnold, LW, Clauw, DJ, Wohlreich, MM et al. Efficacy of duloxetine in patients with fibromyalgia: pooled analysis of 4 placebo-controlled clinical trials. Prim Care Companion J Clin Psychiatry 2009; 11: 237–44.CrossRefGoogle ScholarPubMed
62Harder, A, Gerner, P, Kao, G et al. Cutaneous analgesia after transdermal application of amitriptyline versus lidocaine in rats. Anesth Analg 2003; 96: 1707–10.Google Scholar
63Esser, MJ, Sawynok, J. Acute amitriptyline in a rat model of neuropathic pain: differential symptom and route effects. Pain 1999; 80: 643–53.CrossRefGoogle Scholar
64Esser, MJ, Chase, T, Allen, GV, Sawynok, J. Chronic administration of amitriptyline and caffeine in a rat model of neuropathic pain: multiple interactions. Eur J Pharmacol 2001; 430: 211–18.CrossRefGoogle Scholar
65Sawynok, J, Esser, MJ, Reid, AR. Peripheral antinociceptive actions of desipramine and fluoxetine in an inflammatory and neuropathic pain test in the rat. Pain 1999; 82: 149–58.CrossRefGoogle Scholar
66Sawynok, J, Reid, AR, Esser, MJ. Peripheral antinociceptive action of amitriptyline in the rat formalin test: involvement of adenosine. Pain 1999; 80: 4555.CrossRefGoogle ScholarPubMed
67Sawynok, J, Reid, A. Peripheral interactions between dextromethorphan, ketamine and amitriptyline on formalin-evoked behaviours and paw edema in rats. Pain 2003; 102: 179–86.CrossRefGoogle ScholarPubMed
68Heughan, CE, Allen, GV, Chase, TD, Sawynok, J. Peripheral amitriptyline suppresses formalin-induced Fos expression in the rat spinal cord. Anesth Analg 2002; 94: 427–31.CrossRefGoogle ScholarPubMed
69McCleane, GJ. Topical doxepin hydrochloride reduces neuropathic pain: a randomized, double-blind, placebo controlled study. The Pain Clinic 1999; 12: 4750.CrossRefGoogle Scholar
70McCleane, GJ. Topical administration of doxepin hydrochloride, capsaicin and a combination of both produces analgesia in chronic human neuropathic pain: a randomised, double-blind, placebo-controlled study. Br J Clin Pharmacol 2000; 49: 574–79.CrossRefGoogle Scholar
71McCleane, GJ. Topical application of doxepin hydrochloride can reduce the symptoms of complex regional pain syndrome: a case report. Injury 2002; 33: 8889.CrossRefGoogle ScholarPubMed
72Epstein, JB, Truelove, EL, Oien, H, Allison, C, Le, ND, Epstein, MS. Oral topical doxepin rinse: analgesic effect in patients with oral mucosal pain due to cancer or cancer therapy. Oral Oncol 2001; 37: 632–37.CrossRefGoogle ScholarPubMed
73Rowbotham, MC, Davies, PS, Verkempinck, C, Galer, BS. Lidocaine patch: double-blind controlled study of a new treatment method for post-herpetic neuralgia. Pain 1996; 65: 3944.CrossRefGoogle ScholarPubMed
74Galer, BS, Rowbotham, MC, Perander, J, Friedman, E. Topical lidocaine patch relieves post-herpetic neuralgia more effectively than vehicle patch: results of an enriched enrolment study. Pain 1999; 80: 533–38.CrossRefGoogle ScholarPubMed
75Herrmann, DN, Barbano, RL, Hart-Gouleau, S, Pennella-Vaughan, J, Dworkin, RH. An open-label study of the lidocaine patch 5% in painful idiopathic sensory polyneuropathy. Pain Med 2005; 6: 379–84.CrossRefGoogle ScholarPubMed
76Scarpini, E, Sacilotto, G, Baron, P, Cusini, M, Scarlato, G. Effect of acetyl-L-carnitine in the treatment of painful peripheral neuropathies in HIV+ patients. J Peripher Nerv Syst 1997; 2: 250–52.Google ScholarPubMed
77Sima, AA, Calvani, M, Mehra, M, Amato, A. Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy. Diabetes Care 2005; 28: 96101.CrossRefGoogle ScholarPubMed
78Flatters, SJ, Xiao, WH, Bennett, GJ. Acetyl-L-carnitine prevents and reduces paclitaxel-induced painful peripheral neuropathy. Neurosci Lett 2006; 397: 219–23.CrossRefGoogle ScholarPubMed
79Ghirardi, O, Lo Giudice, P, Pisano, C, Vertechy, M, Bellucci, A, Vesci, L, Cundari, S, Miloso, M, Rigamonti, LM, Nicolini, G, Zanna, C, Carminati, P. Acetyl-L-carnitine prevents and reverts experimental chronic neurotoxicity induced by oxaliplatin, without altering its antitumor properties. Anticancer Res 2005; 25: 2681–87.Google ScholarPubMed
80Ghirardi, O, Vertechy, M, Vesci, L, Canta, A, Nicolini, G, Galbiati, S, Ciogli, C, Quattrini, G, Pisano, C, Cundari, S, Rigamonti, LM. Chemotherapy-induced allodynia: neuroprotective effect of acetyl-L-carnitine. In Vivo 2005; 19: 631–37.Google ScholarPubMed
81Hart, AM, Wilson, AD, Montovani, C, Smith, C, Johnson, M, Terenghi, G, Youle, M. Acetyl-L-carnitine: a pathogenesis based treatment for HIV-associated antiretroviral toxic neuropathy. AIDS 2004; 18: 1549–60.CrossRefGoogle ScholarPubMed
82Herzmann, C, Johnson, MA, Youle, M. Long-term effect of acetyl-L-carnitine for antiretroviral toxic neuropathy. HIV Clin Trials 2005; 6: 344–50.CrossRefGoogle ScholarPubMed
83Chiechio, S, Caricasole, A, Barletta, E, Storto, M, Catania, MV, Copani, A, Vertechy, M, Nicolai, R, Calvani, M, Melchiorri, D, Nicoletti, F. L-acetylcarnitine induces analgesia by selectively up-regulating mGlu2 metabotropic glutamate receptors. Mol Pharmacol 2002; 61: 989–96.CrossRefGoogle ScholarPubMed
84Chiechio, S, Copani, A, De Petris, L, Morales, ME, Nicoletti, F, Gereau, RW 4th. Transcriptional regulation of metabotropic glutamate receptor 2/3 expression by the NF-kappaB pathway in primary dorsal root ganglia neurons: a possible mechanism for the analgesic effect of L-acetylcarnitine. Mol Pain 2006; 2: 20.CrossRefGoogle ScholarPubMed
85Yu, XH, Zhang, ET, Craig, AD, Shigemoto, R, Ribeiro-da-Silva, A, De Koninck, Y. NK-1 receptor immunoreactivity in distinct morphological types of lamina 1 neurons of the primate spinal cord. J Neurosci 1999; 19: 3545–55.CrossRefGoogle ScholarPubMed
86Hunt, S, Mantyh, P. The molecular dynamics of pain control. Nature Reviews 2001; 2: 8391.CrossRefGoogle ScholarPubMed
87Marshall, G, Shehab, S, Spike, R, Todd, A. Neurokinin-1 receptors on lumbar spinothalamic neurons in the rat. Neuroscience 1996; 72: 255–63.CrossRefGoogle ScholarPubMed
88Muller, W, Fiebich, BL, Stratz, T. New treatment options using 5HT3 receptor antagonists in rheumatic diseases. Curr Top Med Chem 2006; 6: 2035–42.CrossRefGoogle ScholarPubMed
89Stratz, T, Farber, L, Varga, B, Baumgartner, C, Haus, U, Muller, W. Fibromyalgia treatment with intravenous tropisetron. Drugs Exp Clin Res 2001; 27: 113–18.Google ScholarPubMed
90Tolk, J, Kohnen, R, Muller, W. Intravenous treatment of fibromyalgia with the 5HT3 receptor antagonist tropisetron in a rheumatological practice. Scand J Rheumatol Suppl 2004; 119: 7275.CrossRefGoogle Scholar
91McCleane, GJ, Suzuki, R, Dickenson, AH. Does a single intravenous injection of the 5HT3 receptor antagonist ondansetron have an analgesic effect in neuropathic pain? A double-blind, placebo-controlled cross-over study. Anesth Analg 2003; 97: 1474–78.CrossRefGoogle Scholar
92Miranda, A, Peles, S, McLean, PG, Sengupta, JN. Effects of the 5HT3 receptor antagonist, alosetron, in a rat model of somatic and visceral hyperalgesia. Pain 2006; 126: 5463.CrossRefGoogle Scholar