Published online by Cambridge University Press: 09 March 2009
The kinematic structure of closed chain mechanisms is suitable for putting an excess number of inputs in addition to the required number to control their position and orientation. With the addition of these excess inputs, it is possible to generate and control the internal forces within the mechanisms by simultaneously activating joints whose action opposes each other. The internal forces balance inside the structure of mechanisms and do not create any resultant force. However, at the static or quasi-static cases they change the stiffness of the mechanisms. In dynamic cases, in addition to the change in stiffness, they may also generate a damping effect. As a result of these effects, the dynamic behavior of closed chain mechanisms changes. This study analyzes the dynamics of the closed chain mechanisms under the effect of internal forces through the simulation and experimental results using a planar closed chain mechanism.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.