Published online by Cambridge University Press: 22 November 2019
This paper deals with a continuous design task of a planar cable robot used in a gait training machine called the cable-driven legs trainer. The design of cable robots requires satisfying two constraints, that is, tensions in the cables must remain non-negative, and cable interferences should be avoided. The carried design approach is based on interval analysis, which is one of the most efficient methods to obtain certified results. The constraints of non-negative tensions and cable to end-effector interference are solved using interval analysis tools. By means of a dynamic simulation, the reached workspace and the produced wrenches of the cable robot are evaluated as a set of interval vectors. An optimization algorithm is then designed to optimize the cable robot structure for the gait training machine. The robot is designed to produce non-negative tensions in the cables and to avoid collision at all times within the desired workspace and under the required external loads.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.