Published online by Cambridge University Press: 02 March 2021
In this paper, an analytical study of the kinematics and dynamics of Stewart platform-based machine tool structures is presented. The kinematic study includes the derivation of closed form expressions for the inverse Jacobian matrix of the mechanism and its time derivative. An evaluation of a numerical iterative scheme for an on-line solution of the forward kinematic problem is also presented. Effects of different configurations of the unpowered joints on the angular velocities and accelerations of the links are considered. The Newton-Euler formulation is used to derive the rigid body dynamic equations. Inclusion of models for actuator dynamics and joint friction is discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.