Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T21:00:01.244Z Has data issue: false hasContentIssue false

Mechanical actuation via resorbable materials

Published online by Cambridge University Press:  15 November 2023

Bethany Parkinson*
Affiliation:
Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
Brandon Sargent
Affiliation:
Department of Mechanical Engineering, Gonzaga University, Spokane, WA, USA
Clark Roubicek
Affiliation:
Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
Spencer Magleby
Affiliation:
Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
Victor Garcia
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
Larry Howell
Affiliation:
Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
*
Corresponding author: Bethany Parkinson; Email: bethanyparkinson@gmail.com

Abstract

Resorbable materials – or materials which diffuse into their surroundings – present a promising means of actuating mechanical systems. In current practice, such as in the realm of in vivo surgical devices, resorbable materials are intended to perform a temporary function and completely dissolve when that function is completed (e.g., resorbable sutures). In this paper, resorbable materials are proposed for use in a different way: as a means for actuation. We propose an approach and physical prototypes to demonstrate that resorbable materials, combined with stored energy, can be used to actuate mechanical systems under several loading conditions and in various applications. Rotary and linear actuation methods, as well as gradual and delayed instantaneous actuations, are demonstrated. Using the principles illustrated here, resorbable materials offer unique, customizable ways to actuate a variety of mechanisms in a wide range of domains.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H. and Glogauer, M., “Biodegradable materials for bone repair and tissue engineering applications,” Materials 8(9), 57445794 (2015).CrossRefGoogle ScholarPubMed
Ciccone, W., Motz, C., Bentley, C. and Tasto, J., “Bioabsorbable implants in orthopaedics: New developments and clinical applications,” J. Am. Acad. Orthopaed. Surg. 9(5), 280288 (2001).CrossRefGoogle ScholarPubMed
Tschegg, E., Lindtner, R., Doblhoff-Dier, V., Stanzl-Tschegg, S., Holzlechner, G., Castellani, C., Imwinkelried, T. and Weinberg, A., “Characterization methods of bone–implant-interfaces of bioresorbable and titanium implants by fracture mechanical means,” J. Mech. Behav. Biomed. 4(5), 766775 (2011).CrossRefGoogle ScholarPubMed
Yang, Q., Lee, S., Xue, Y., Yan, Y., Liu, T.-L., Kang, S.-K., Lee, Y. J., Lee, S. H., Seo, M.-H. and Lu, D., “Materials, mechanics designs, and bioresorbable multisensor platforms for pressure monitoring in the intracranial space,” Adv. Funct. Mater. 30(17), 1910718 (2020).CrossRefGoogle Scholar
Chatterjee, S., Saxena, M., Padmanabhan, D., Jayachandra, M. and Pandya, H. J., “Futuristic medical implants using bioresorbable materials and devices,” Biosens. Bioelectron. 142, 111489 (2019).CrossRefGoogle ScholarPubMed
Claes, L., “Mechanical characterization of biodegradable implants,” Clin. Mater. 10(1-2), 4146 (1992).CrossRefGoogle ScholarPubMed
Wuisman, P. and Smit, T., “Bioresorbable polymers: Heading for a new generation of spinal cages,” Eur. Spine J. 15(2), 133148 (2006).CrossRefGoogle ScholarPubMed
van Dijk, M., Smit, T. H., Sugihara, S., Burger, E. H. and Wuisman, P. I., “The effect of cage stiffness on the rate of lumbar interbody fusion: An in vivo model using poly (l-lactic acid) and titanium cages,” Spine 27(7), 682688 (2002).CrossRefGoogle Scholar
Morsada, Z., Hossain, M. M., Islam, M. T., Mobin, M. A. and Saha, S., “Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics,” Appl. Mater. Today 25, 101257 (2021).CrossRefGoogle Scholar
Huang, X., Bioresorbable Materials and Their Application in Electronics (Cambridge University Press, Cambridge, England, 2017).CrossRefGoogle Scholar
Pontell, M. E., Niklinska, E. B., Braun, S. A., Jaeger, N., Kelly, K. J. and Golinko, M. S., “Resorbable versus titanium rigid fixation for pediatric mandibular fractures: A systematic review, institutional experience and comparative analysis,” Craniomaxillofac. Trauma Reconstruc. 15(3), 189200 (2022).CrossRefGoogle ScholarPubMed
Prasad, A., Chakraborty, G. and Kumar, A., “Bio-Based Environmentally Benign Polymeric Resorbable Materials for Orthopedic Fixation Applications,” In: Advanced Materials for Biomedical Applications (CRC Press, 2022) pp. 251266.CrossRefGoogle Scholar
Yang, T.-H., Chou, Y.-C., Ju, C.-P. and Lin, J.-H. C., “Osteoregenerative efficacy of a novel synthetic, resorbable ca/p/s-based bone graft substitute in intra-and peri-articular fractures: A brief medical image-based report,” J. Orthop. Surg. Res. 17(1), 18 (2022).CrossRefGoogle ScholarPubMed
Regidor, E., Ortiz-Vigón, A., Romandini, M., Dionigi, C., Derks, J. and Sanz, M., “The adjunctive effect of a resorbable membrane to a xenogeneic bone replacement graft in the reconstructive surgical therapy of peri-implantitis: A randomized clinical trial,” J. Clin. Periodontol. 50(6), 765783 (2023).CrossRefGoogle ScholarPubMed
Andreaus, U., Giorgio, I. and Lekszycki, T., “A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time,” J. Appl. Math. Mech. 94, 9781000 (2014).Google Scholar
Giorgio, I., Andreaus, U., Scerrato, D. and Dell’Isola, F., “A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials,” Biomech. Model. Mechanobiol. 15(5), 13251343 (2016).CrossRefGoogle ScholarPubMed
Grosjean, M., Ouedraogo, S., Déjean, S., Garric, X., Luchnikov, V., Ponche, A., Mathieu, N., Anselme, K. and Nottelet, B., “Bioresorbable bilayered elastomer/hydrogel constructs with gradual interfaces for the fast actuation of self-rolling tubes,” ACS Appl. Mater. Inter. 14(38), 4371943731 (2022).CrossRefGoogle ScholarPubMed
Despain, D. J., Design Validation of a Multi-Stage Gradually Deploying Stent, PhD thesis, Brigham Young University, 2021.Google Scholar
Vieira, A., Vieira, J., Ferra, J., aes, F. M., Guedes, R. and Marques, A., “Mechanical study of pla–pcl fibers during in vitro degradation,” J. Mech. Behav. Biomed. 4(3), 451460 (2011).CrossRefGoogle ScholarPubMed
Cutright, D. E., Perez, B., Beasley, J. D. III, Larson, W. J. and Posey, W. R., “Degradation rates of polymers and copolymers of polylactic and polyglycolic acids,” Oral Surg. Oral Med. Oral Pathol. 37(1), 142152 (1974).CrossRefGoogle ScholarPubMed
Bergsma, J. E., Rozema, F., Bos, R., Boering, G., De Bruijn, W. and Pennings, A., “In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles,” Biomaterials 16(4), 267274 (1995).CrossRefGoogle Scholar
Guarino, V., Lewandowska, M., Bil, M., Polak, B. and Ambrosio, L., “Morphology and degradation properties of pcl/hyaff11® composite scaffolds with multi-scale degradation rate,” Compos. Sci. Technol. 70(13), 18261837 (2010).CrossRefGoogle Scholar
Sun, H., Mei, L., Song, C., Cui, X. and Wang, P., “The in vivo degradation, absorption and excretion of pcl-based implant,” Biomaterials 27(9), 17351740 (2006).CrossRefGoogle ScholarPubMed
Lambotte, A., “L’utilisation du magnesium comme materiel perdu dans l’osteosynthèse,” Bull. Mem. Soc. Nat. Chir. 28(3), 13251334 (1932).Google Scholar
Witte, F., “The history of biodegradable magnesium implants: A review,” Acta Biomater. 6(5), 16801692 (2010).CrossRefGoogle ScholarPubMed
Nuss, D., Obermeyer, R. J. and Kelly, R. E., “Nuss bar procedure: Past, present and future,” Ann. Cardiothorac. Surg. 5(5), 422 (2016).CrossRefGoogle ScholarPubMed
Čolić, K., Sedmak, A., Legweel, K., Milošević, M., Mitrović, N., Mišković, Ž. and Hloch, S., “Experimental and numerical research of mechanical behaviour of titanium alloy hip implant,” Tehnički vjesnik–Technical Gazette 24(3), 709713 (2017).Google Scholar
Schütz, P., Postolka, B., Gerber, H., Ferguson, S. J., Taylor, W. R. and List, R., “Knee implant kinematics are task-dependent,” J. R. Soc. Interf. 16(151), 20180678 (2019).CrossRefGoogle ScholarPubMed
Mehin, R., Burnett, R. and Brasher, P., “Does the new generation of high-flex knee prostheses improve the post-operative range of movement? A meta-analysis,” J Bone Joint Surg. Brit. 92(10), 14291434 (2010).CrossRefGoogle ScholarPubMed
Morlacchi, S., Pennati, G., Petrini, L., Dubini, G. and Migliavacca, F., “Influence of plaque calcifications on coronary stent fracture: A numerical fatigue life analysis including cardiac wall movement,” J. Biomech. 47(4), 899907 (2014).CrossRefGoogle ScholarPubMed
Findl, O., Kiss, B., Petternel, V., Menapace, R., Georgopoulos, M., Rainer, G. and Drexler, W., “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refractive Surg. 29(4), 669676 (2003).CrossRefGoogle ScholarPubMed
Lesiewska-Junk, H. and Kałużny, J., “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract Refractive Surg. 26(4), 562565 (2000).CrossRefGoogle ScholarPubMed
Cattaneo, P., Dalstra, M. and Melsen, B., “The finite element method: A tool to study orthodontic tooth movement,” J. Dent. Res. 84(5), 428433 (2005).CrossRefGoogle Scholar
Handelman, C. S., Wang, L., BeGole, E. A. and Haas, A. J., “Nonsurgical rapid maxillary expansion in adults: Report on 47 cases using the haas expander,” Angle Orthodontist 70(2), 129144 (2000).Google ScholarPubMed
Lenarz, T., “Cochlear Implant–state of the Art,” In: GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery. vol. 16, (2017).Google Scholar
Teoh, K. H., Winson, D. M., James, S. H., Jones, A., Howes, J., Davies, P. R. and Ahuja, S., “Magnetic controlled growing rods for early-onset scoliosis: A 4-year follow-up,” Spine J. 16(4), S34S39 (2016).CrossRefGoogle ScholarPubMed
Rushton, P. R., Smith, S. L., Kandemir, G., Forbes, L., Fender, D., Bowey, A. J., Gibson, M. J. and Joyce, T. J., “Spinal lengthening with magnetically controlled growing rods: Data from the largest series of explanted devices,” Spine 45(3), 170176 (2020).CrossRefGoogle ScholarPubMed
Torres, A., AlYazeedy, I. and Yen, S., “A programmable expander for patients with cleft lip and palate,” Cleft Palate-Craniofacial J. 56(6), 837844 (2019).CrossRefGoogle ScholarPubMed
Schaepelynck, P., Darmon, P., Molines, L., Jannot-Lamotte, M., Treglia, C. and Raccah, D., “Advances in pump technology: Insulin patch pumps, combined pumps and glucose sensors, and implanted pumps,” Diabetes Metab. 37, S85S93 (2011).CrossRefGoogle ScholarPubMed
Renard, E., “Implantable closed-loop glucose-sensing and insulin delivery: The future for insulin pump therapy,” Curr. Opin. Pharmacol. 2(6), 708716 (2002).CrossRefGoogle ScholarPubMed
Mirowski, M., “The automatic implantable cardioverter-defibrillator: An overview,” J. Am. Coll. Cardiol. 6(2), 461466 (1985).CrossRefGoogle ScholarPubMed
DiFrancesco, D., “Pacemaker mechanisms in cardiac tissue,” Annu. Rev. Physiol. 55(1), 455472 (1993).CrossRefGoogle ScholarPubMed
Ouyang, H., Liu, Z., Li, N., Shi, B., Zou, Y., Xie, F., Ma, Y., Li, Z., Li, H. and Zheng, Q., “Symbiotic cardiac pacemaker,” Nat. Commun. 10(1), 110 (2019).CrossRefGoogle ScholarPubMed
Skousen, D. and Bowden, A. E., “Multi-stage stent devices and associated methods,” Oct. 22 2020. US Patent App. 15/999,254.Google Scholar
Ang, H. Y., Bulluck, H., Wong, P., Venkatraman, S. S., Huang, Y. and Foin, N., “Bioresorbable stents: Current and upcoming bioresorbable technologies,” Int. J. Cardiol. 228, 931939 (2017).CrossRefGoogle ScholarPubMed
Iqbal, J., Onuma, Y., Ormiston, J., Abizaid, A., Waksman, R. and Serruys, P., “Bioresorbable scaffolds: Rationale, current status, challenges, and future,” Eur. Heart J. 35(12), 765776 (2014).CrossRefGoogle ScholarPubMed
Gao, Y., Xu, Y., Land, A., Harris, J., Policastro, G. M., Childers, E. P., Ritzman, T., Bundy, J. and Becker, M. L., “Sustained release of recombinant human growth hormone from bioresorbable poly (ester urea) nanofibers,” ACS Macro Lett. 6(8), 875880 (2017).CrossRefGoogle Scholar
Holland, S. J., Tighe, B. J. and Gould, P. L., “Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems,” J. Control. Release 4(3), 155180 (1986).CrossRefGoogle Scholar
Derderian, J. M., Howell, L. L., Murphy, M. D., Lyon, S. M. and Pack, S. D.. Compliant Parallel-guiding Mechanisms. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, vol. 97577, 1996) pp. V02AT02A017.Google Scholar
Howell, L. L., “Compliant Mechanisms,” In: Compliant Mechanisms (Wiley, 2001) pp. 189216.Google Scholar
Gurnett, C. A., Alaee, F., Bowcock, A., Kruse, L., Lenke, L. G., Bridwell, K. H., Kuklo, T., Luhmann, S. J. and Dobbs, M. B., “Genetic linkage localizes an adolescent idiopathic scoliosis and pectus excavatum gene to the 18q chromosome,” Spine 34(2), E94E100 (2009).CrossRefGoogle Scholar
Tong, X., Li, G. and Feng, Y., “Tinag mutation as a genetic cause of pectus excavatum,” Med. Hypotheses 137, 109557 (2020).CrossRefGoogle ScholarPubMed
Chaput, B., Laguerre, A. and Chavoin, J.-P., “Thoracic Malformations: Etiopathogeny, Genetic, and Associated Syndromes,” In: Pectus Excavatum and Poland Syndrome Surgery (Springer, 2019) pp. 112.Google Scholar
Fonkalsrud, E. W., “Current management of pectus excavatum,” World J. Surg. 27(5), 502508 (2003).CrossRefGoogle ScholarPubMed
Tocchioni, F., Ghionzoli, M., Messineo, A. and Romagnoli, P., “Pectus excavatum and heritable disorders of the connective tissue,” Pediatr. Rep. 5(3), e15 (2013).CrossRefGoogle ScholarPubMed
Cartoski, M. J., Nuss, D., Goretsky, M. J., Proud, V. K., Croitoru, D. P., Gustin, T., Mitchell, K., Vasser, E. and Kelly, R. E. Jr, “Classification of the dysmorphology of pectus excavatum,” J. Pediatr. Surg. 41(9), 15731581 (2006).CrossRefGoogle ScholarPubMed
Biavati, M., Kozlitina, J., Alder, A. C., Foglia, R., McColl, R. W., Peshock, R. M., Kelly, R. E. Jr and Garcia, C. K., “Prevalence of pectus excavatum in an adult population-based cohort estimated from radiographic indices of chest wall shape,” PloS One 15(5), e0232575 (2020).CrossRefGoogle Scholar
Kotzot, D. and Schwabegger, A. H., “Etiology of chest wall deformities–a genetic review for the treating physician,” J. Pediatr. Surg. 44(10), 20042011 (2009).CrossRefGoogle ScholarPubMed
Ravitch, M. M., “Repair of pectus excavatum in children under 3 years of age: A twelve-year experience,” Ann. Thorac. Surg. 23(4), 301 (1977).CrossRefGoogle ScholarPubMed
Farronato, A., Ghionzoli, M., Messineo, A., Politi, L., Divisi, D., Gonfiotti, A. and Crisci, R., “Pectus excavatum in adolescents and children: The nuss, technique,” Pediatr. Med. 2, 32 (2019).CrossRefGoogle Scholar
Chao, C.-J., Jaroszewski, D. E., Kumar, P. N., Ewais, M. M., Appleton, C. P., Mookadam, F., Gotway, M. B. and Naqvi, T. Z., “Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients–an intraoperative transesophageal echocardiographic study,” Am. J. Surg. 210(6), 11181125 (2015).CrossRefGoogle ScholarPubMed
Fonkalsrud, E. W., Dunn, J. C. and Atkinson, J. B., “Repair of pectus excavatum deformities: 30 years of experience with 375 patients,” Ann. Surg. 231(3), 443448 (2000).CrossRefGoogle ScholarPubMed
Jaroszewski, D., Notrica, D., McMahon, L., Steidley, D. E. and Deschamps, C., “Current management of pectus excavatum: A review and update of therapy and treatment recommendations,” J. Am. Board Fam. Med. 23(2), 230239 (2010).CrossRefGoogle ScholarPubMed
Quigley, P. M., Haller, J. A. Jr, Jelus, K. L., Loughlin, G. M. and Marcus, C. L., “Cardiorespiratory function before and after corrective surgery in pectus excavatum,” J. Pediatr. 128(5), 638643 (1996).CrossRefGoogle ScholarPubMed
Sigalet, D. L., Montgomery, M. and Harder, J., “Cardiopulmonary effects of closed repair of pectus excavatum,” J. Pediatr. Surg. 38(3), 380385 (2003).CrossRefGoogle ScholarPubMed
Ravitch, M. M., “Pectus excavatum and heart failure,” Surgery 30(1), 178194 (1951).Google ScholarPubMed
Wachtel, F. W., Ravitch, M. M. and Grishman, A., “The relation of pectus excavatum to heart disease,” Am. Heart J. 52(1), 121137 (1956).CrossRefGoogle ScholarPubMed
Kelly, R. E. Jr, “Pectus Excavatum: Historical Background, Clinical Picture, Preoperative Evaluation and Criteria for Operation,” In: Seminars in Pediatric Surgery. vol. 17 (Elsevier, 2008) pp. 181193.Google Scholar
Nuss, D., “Recent experiences with minimally invasive pectus excavatum repair “nuss procedure,” Japn. J. Thorac. Cardiovasc. Surg. 53(7), 338344 (2005).CrossRefGoogle ScholarPubMed
Ynchausti, C., Brown, N., Magleby, S. P., Bowden, A. E. and Howell, L. L., “Deployable euler spiral connectors,” J. Mechan. Robot. 14(2), 021003 (2022).Google Scholar
Levien, R., The Euler Spiral: A Mathematical History. Technical Report No. UCB/EECS-2008-111 (EECS Department, University of California, Berkeley, 2008).Google Scholar
Zhang, T., Jin, G., Han, X., Gao, Y., Zeng, Q., Hou, B. and Zhang, D., “Multiscale modelling for the heterogeneous strength of biodegradable polyesters,” J. Mech. Behav. Biomed. 90, 337349 (2019).CrossRefGoogle ScholarPubMed
Supplementary material: File

Parkinson et al. supplementary material

Parkinson et al. supplementary material

Download Parkinson et al. supplementary material(File)
File 20.4 MB