Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T17:11:28.403Z Has data issue: false hasContentIssue false

Process of optimisation for a 4 DOF tele-echography robot

Published online by Cambridge University Press:  12 January 2012

L. Nouaille*
Affiliation:
PRISME Laboratory, University of Orleans, 63 av de Lattre de Tassigny, 18020 Bourges Cedex, France
P. Vieyres
Affiliation:
PRISME Laboratory, University of Orleans, 63 av de Lattre de Tassigny, 18020 Bourges Cedex, France
G. Poisson
Affiliation:
PRISME Laboratory, University of Orleans, 63 av de Lattre de Tassigny, 18020 Bourges Cedex, France
*
*Corresponding author. E-mail: Laurence.Nouaille@bourges.univ-orleans.fr

Summary

This paper deals with processes of optimisation for the design of a four degree-of-freedom robot dedicated to remote ultrasound tele-echography. This robot is designed to track the medical gestures of a remote expert moving an ultrasound probe. The goal is to optimise the kinematic structure by fixing the geometric parameters; these have a significant role in robot configuration singularities, with respect to current medical gestures and mechanism compactness. After choosing a dedicated kinematic structure, several optimisations are presented. Then an optimal choice of geometrical parameters of a global function in relation with kinematic performance indices and compactness is proposed. This robot is soon to be used in the experimental medical phase of the Prosit project.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Al Bassit, L., Structure Mecanique a Modules Spheriques Optimisees Pour un Robot Medical de Tele-Echographie Mobile Ph.D. Dissertation (Orleans, France: Orleans University, 2005).Google Scholar
2. Gourdon, A., Poignet, Ph., Poisson, G., Vieyres, P. and Marché, P., “A New Robotic Mechanism for Medical Application,” Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, GA, USA (Sep. 19–23, 1999) pp. 3338.Google Scholar
3. Vilchis, A., et al., “TER: A system for robotic tele-echography,” In: Lecture Notes in Computer Science (Niessen, W. and Viergever, M., eds.) (Springer-Verlag, 2001) pp. 326334, vol. 2208.Google Scholar
4. Vieyres, P., Poisson, G., Courrèges, F., Novales, C., Smith-Guerin, N., Arbeille, Ph. and Brù, C., “A tele-operated robotic system for mobile tele-echography: The OTELO project,” In: M-Health: Emerging Mobile Health Systems (Istepanian, R. S. H., Laxminarayan, S. and Pattichis, C. S., eds.) (Springer, 2006) pp. 461474.CrossRefGoogle Scholar
5. Mitsuishi, M., Warisawa, S., Tsuda, T., Higuchi, T., Koizumi, N., Hashizume, H. and Fujiwara, K., “Remote Ultrasound Diagnostic System,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA2001, Seoul, South Korea (May 21–26, 2001) pp. 15671574.Google Scholar
6. Masuda, K., Kimura, E., Tateishi, N. and Ishihara, K., “Three Dimensional Motion Mechanism of Ultrasound Probe and its Application for Tele-echography System,” Proceedings of the International Conference on IROS 2001, Maui, HI, USA (Oct. 29–Nov. 3, 2001) pp. 11121116.Google Scholar
7. Najafi, F. and Sepehri, N., “A novel hand controller for remote ultrasound imaging,” Mechatronics 18, 578590 (2008).CrossRefGoogle Scholar
8. Ito, K., Sugano, S. and Iwata, H., “Wearable Echography Robot for Trauma Patient,” Proceedings of the International Conference on IROS, Taipei (Oct, 18–22, 2010) pp. 47944799.Google Scholar
9. Zemiti, N., Ortmaier, T., Vitrani, M. A. and Morel, G., “A Force Controlled Laparoscopic Surgical Robot Without Distal Force Sensing,” Proceedings of the 9th International Symposium on Experimental Robotics, ISER'04, Singapore (Jun. 18–21, 2004) pp. 153164.Google Scholar
10. Long, G. L., Paul, R. P. and Fisher, W. D., “The Hamilton Wrist: A Four Revolute Spherical Wrist Without Singularities,” Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA (May 14–19, 1989) pp. 902907.Google Scholar
11. Salcudean, S. E., Zhu, W. H., Abolmaesumi, P., Bachmann, S. and Lawrence, P. D., “A Robot System for Medical Ultrasound,” Proceedings of the 9th International Symposium of Robotics Research, ISSR'99, Snowbird, UT, USA (Oct. 9–12, 1999) pp. 195202.Google Scholar
12. Guthart, G. and Salisbury, J. K., “The Intuitive Telesurgery System: Overview and Applications,” Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA (Apr. 24–28, 2000) pp. 618621.Google Scholar
13. Vilchis, A. and Troccaz, J., “A new robot architecture for tele-echography,” IEEE Tran. Robot. Autom. 19, 922924 (2003).CrossRefGoogle Scholar
14. Berkelman, P., Boidard, E., Cinquin, P. and Troccaz, J., “From the Laboratory to the Operating Room: Usability Testing of LER, The Light Endoscope Robot,” Proceedings of the Scientific Workshop on Medical Robotics, Navigation and Visualization (MRNV 2004), Remagen, Germany (Mar. 11–12, 2004) pp. 338343.Google Scholar
15. Schurr, M. O., Breitwieser, H., Melzer, A., et al., “Experimental telemanipulation in endoscopic surgery,” Surg. Endosc. 6, 167175 (1996).Google ScholarPubMed
16. Sackier, J. M. and Wang, Y., “Robotically assisted laparoscopic surgery: From concept to development,” Surg. Endosc. 8, 6366 (1994).CrossRefGoogle ScholarPubMed
17. Assada, H. and Granito, C., “Kinematic Ans Static Characterization of Wrist Joints and their Optimal Design,” Proceedings of the IEEE Conference on Robotics and Automation, St Louis, MO, USA (Mar. 25–28, 1985) pp. 244250.Google Scholar
18. Gosselin, C. and Angeles, J., “The optimum kinematic design of a spherical 3-DOF parallel manipulator,” J. Mech. Transm. Autom. Des. 111, 202207 (1989).CrossRefGoogle Scholar
19. Karouia, M. and Hervé, J. M., “Enumération des mécanismes parallèles sphériques isostatiques,” Congrès Francais de Mécanique, Nice, France (Sep. 1–5, 2003) pp. 16.Google Scholar
20. Khan, W. A. and Angeles, J., “The Role of Entropy in Design Theory and Methodology,” Séminaire ISIR, Seminar, Paris, France (Jan. 2008) pp. 134.Google Scholar
21. Nouaille, L., Demarche de Conception de Robots Medicaux: Application a un Robot de Tele-Echographie Ph.D. Dissertation (Orleans, France: Orleans University, 2009).Google Scholar
22. Smith-Guérin, N., Nouaille, L., Vieyres, P. and Poisson, G., “A medical robot kinematics design approach based on knowledge management,” Ind. Robot 35, 316323 (2008).CrossRefGoogle Scholar
23. Courreges, F., et al., “Real-time exhibition of a simulated space tele-echography using an ultra-light robot,” Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space, ISAIRAS, St-Hubert, Canada (Jun. 18–22, 2001) pp. 15.Google Scholar
24. Arbeille, P., Ruiz, P. J., Herve, J. P., Chevillot, M., Poisson, G. and Perrotin, F., “Fetal tele-echography using a robotic arm and a satellite link,” Ultrasound Obstet. Gynecol. 26 (3), 221226 (2005).CrossRefGoogle Scholar
25. Arbeille, P., Capri, A., Ayoub, J., Kieffer, V., Georgescu, M. and Poisson, G., “Use of a robotic arm to tele operated abdominal ultrasound,” Am. J. Roentgenol. 188, 317322 (2007).CrossRefGoogle Scholar
26. Courrèges, F., Novales, C., Poisson, C. G. and Vieyres, P., “Modélisation, commande géométrique et utilisation d'un robot portable de télé-échographie: Teresa,” J. Européen des Systèmes Automatisés 43 (1), 165196.CrossRefGoogle Scholar
27. Courreges, F., Vieyres, F. P. and Poisson, G., “Robotized tele-echography,” In: Teleradiology (Kumar, S. and Krupinski, E. A., eds.) (Springer-Verlag, 2008) pp. 139153.CrossRefGoogle Scholar
28. Khalil, W. and Kleinfinger, J.-F., “A New Geometric Notation for Open and Closed-Looped Robots,” Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA (Apr. 7–10, 1986) pp. 11741180.Google Scholar
29. Bayle, B., Fourquet, J. Y. and Renaud, M., “Manipulability Analysis for Mobile Manipulators,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2001, Seoul, South Korea (May 21–26, 2001) pp. 12511256.Google Scholar
30. Dequidt, A., Bernier, D. and Valdès, E., “Sur une extension du paramètrage de Denavit & Hartenberg pour la description systématique des chaînes cinématiques,” Congrès Francais de Mécanique, Nice, France (Sep. 1–5, 2003) pp. 16.Google Scholar
31. Nouaille, L., Smith-Guerin, N. and Poisson, G., “Modeling and Geometrical Validation of a Tele-Echography Robot,” Proceedings of the International Conference on IROS, Nice, France (Sep. 22–26, 2008) pp. 14471452.Google Scholar
32. Khalil, W. and Dombre, E., Modélisation Identification et Commande des Robots (Hermes Science Publications, Paris, 1999) pp. 112114, chap. 5 §5.3.1.Google Scholar
33. Yoshikawa, T., “Manipulability of robotic mechanisms,” Int. J. Robot. Res. 4 (2), 39 (1985).CrossRefGoogle Scholar
34. Klein, C. A. and Blaho, B. E., “Dexterity measures for the design and control of kinematically redundant manipulator,” Int. J. Robot. Res. 6 (2), 7283 (1987).CrossRefGoogle Scholar
35. Alici, G. and Shirinzadeh, B., “Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint,” Mech. Mach. Theory 39, 215235 (2004).CrossRefGoogle Scholar
36. Shaoping, B., “Optimum design of spherical parallel manipulators for a prescribed workspace,” Mech. Mach. Theory 45, 200211 (2010).Google Scholar
37. Lum, M., Rosen, J., Sinanan, M. and Hannaford, B., “Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot,” Proceedings of the IEEE International Conference on Robotics and Automations, Seattle, WA, USA (Apr. 26–May 1, 2004) pp. 36433648.Google Scholar
38. Lum, M., Rosen, J., Sinanan, M. and Hannaford, B., “Optimization of a spherical mechanism for minimally invasive surgical robot: Theoretical and experimental approaches,” IEEE Trans. Biomed. Eng. 53 (7), 14401445 (2006).CrossRefGoogle ScholarPubMed
39. Zhang, X. and Nelson, C. A., “Kinematic analysis and optimization of a novel robot for surgical tool manipulation,” ASME J. Med. Devices 2 (2), 8 (2008).CrossRefGoogle Scholar
40. Zhang, X. and Nelson, C. A., “Multiple-criteria kinematic optimization for the design of spherical serial mechanism using genetic algorithm,” J. Mech. Des. 133 (1), 11 (2011).CrossRefGoogle Scholar
41. Nouaille, L., Smith-Guérin, N., Poisson, G. and Arbeille, P., “Optimization of a 4 DOF Tele-Echography Robot,” Proceedings of the International Conference on IROS, Taipei (Oct. 18–22, 2010) pp. 35013506.Google Scholar
42. Gosselin, C. and Angeles, J., “A global performance index for the kinematic optimization of robotic manipulators,” ASME J. Mech. Des. 113 (3), 220226 (1991).CrossRefGoogle Scholar
43. Scott, M. J., “Using Indifference Points in Engineering Decisions,” Proceedings of the 11th International Conference on Design Theory and Methodology, ASME, Baltimore, MD, USA (Sep. 10–13, 2000) pp. 11.Google Scholar
44. Kucuk, S. and Bingul, Z., “Comparative study of performance indices for fundamental robot manipulators,” Robot. Auton. Syst. 54, 567573 (2006).CrossRefGoogle Scholar
45. Angeles, J. and Park, F. C., “Performance evaluation and design criteria,” In: Springer Handbook of Robotics (Siciliano, B. and Khatib, Q., eds.) (Springer 2008) pp. 229244.CrossRefGoogle Scholar