Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T17:12:02.622Z Has data issue: false hasContentIssue false

Video data validation by sonar measures for robot localization and environment feature estimation

Published online by Cambridge University Press:  29 August 2008

A. Bonci
Affiliation:
Dipartimento di Ingegneria Informatica, Gestionale e dell'Automazione, Università Politecnica delle MarcheVia Brecce Bianche, 60131 Ancona, Italy.
G. Ippoliti
Affiliation:
Dipartimento di Ingegneria Informatica, Gestionale e dell'Automazione, Università Politecnica delle MarcheVia Brecce Bianche, 60131 Ancona, Italy.
A. La Manna
Affiliation:
Dipartimento di Ingegneria Informatica, Gestionale e dell'Automazione, Università Politecnica delle MarcheVia Brecce Bianche, 60131 Ancona, Italy.
S. Longhi*
Affiliation:
Dipartimento di Ingegneria Informatica, Gestionale e dell'Automazione, Università Politecnica delle MarcheVia Brecce Bianche, 60131 Ancona, Italy.
*
*Corresponding author. E-mail: sauro.longhi@univpm.it

Summary

In this paper, the robust robot localization problem with respect to uncertainties on environment features is formulated in a stochastic setting, and an extended Kalman filtering approach is proposed for the integration of odometric, video camera, and sonar measures. The environment is supposed to be only partially known, and a probabilistic method for sensor data fusion aimed at increasing the environment knowledge is considered.

Type
Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bonci, A., Ippoliti, G., Jetto, L., Leo, T. and Longhi, S., “Methods and Algorithms for Sensor Data Fusion Aimed at Improving the Autonomy of a Mobile Robot,” In: Springer Tracts in Advanced Robotics, Vol. 10: Advances in Control of Articulated and Mobile Robots (Siciliano, B., De Luca, A., Melchiorri, C. and Casalino, G., eds.) (Springer, Berlin, Heidelberg, Germany, 2004) pp. 191222.CrossRefGoogle Scholar
2. Gu, J., Meng, M., Cook, A. and Liu, P. X., “Sensor Fusion in Mobile Robot: Some Perspectives,” Proceedings of the 4th World Congress on Intelligent Control and Automation, Vol. 2 (Shanghai, China, 2002) pp. 11941199.Google Scholar
3. Ippoliti, G., Jetto, L., La Manna, A. and Longhi, S., “Improving the Robustness Properties of Robot Localization Procedures with Respect to Environment Features Uncertainties,” Proceedings of the IEEE International Conference on Robotics and Automation (Barcelona, Spain, 2005) pp. 14511458.Google Scholar
4. Gutmann, J.-S., Burgard, W., Fox, D. and Konolige, K., “An Experimental Comparison of Localization Methods,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2 (Victoria, Canada, 1998) pp. 736743.Google Scholar
5. Gutmann, J.-S. and Fox, D., “An Experimental Comparison of Localization Methods Continued,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1 (Lausanne, Switzerland, 2002) pp. 454459.Google Scholar
6. Arras, K. O., Castellanos, J. A., Schilt, M. and Siegwart, R., “Feature-based multi-hypothesis localization and tracking using geometric constraints,” Rob. Autonom. Syst. 44 (1), 4153 (Jul. 2003).CrossRefGoogle Scholar
7. Borenstein, J., Everett, H. R., Feng, L. and Wehe, D., “Mobile robot positioning—Sensors and techniques,” J. Rob. Syst. 14 (4), 231249 (Apr. 1997).3.0.CO;2-R>CrossRefGoogle Scholar
8. Goel, P., Roumeliotis, S. I. and Sukhatme, G. S., “Robust Localization Using Relative and Absolute Position Estimates,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2 (Kyonagju Korea, 1999) pp. 11341140.Google Scholar
9. Tardós, J. D., Neira, J., Newman, P. M. and Leonard, J. J., “Robust mapping and localization in indoor environments using sonar data,” Int. J. Rob. Res. 21 (4), 311330 (Apr. 2002).CrossRefGoogle Scholar
10. Borenstein, J. and Koren, Y., “Histogramic in-motion mapping for mobile robot obstacle avoidance,” Int. J. Rob. Res. 7 (4), 535539 (Aug. 1991).Google Scholar
11. Thrun, S., “Robotic Mapping: A Survey,” In: Exploring Artificial Intelligence in the New Millenium (Lakemeyer, G. and Nebel, B., eds.) (Morgan Kaufmann, San Francisco, CA, 2002).Google Scholar
12. Folkesson, J. and Christensen, H., “Graphical SLAM—A Self-Correcting Map,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 1 (New Orleans, LA, USA, 2004) pp. 383390.Google Scholar
13. Leonard, J. J. and Feder, H. J. S., “Decoupled stochastic mapping,” IEEE J. Oceanic Eng. 26 (4), 561571 (Oct. 2001).CrossRefGoogle Scholar
14. Thrun, S., Fox, D. and Burgard, W., “A probabilistic approach to concurrent mapping and localization for mobile robots,” Mach. Learn. 31 (1–3), 2953 (1998). Also appeared in Autonom. Rob. 5, 253–271 (joint issue).CrossRefGoogle Scholar
15. Dellaert, F. and Kaess, M., “Square root SAM: Simultaneous localization and mapping via square root information smoothing,” Int. J. Rob. Res. 25 (12), 11811203 (Dec. 2006).CrossRefGoogle Scholar
16. Eustice, R., Singh, H., Leonard, J., Walter, M. and Ballard, R., “Visually Navigating the RMS Titanic with SLAM Information Filters,” Proceedings of Robotics: Science and Systems (Cambridge, MA, USA, 2005) pp. 57–64.CrossRefGoogle Scholar
17. Durrant-Whyte, H. and Bailey, T., “Simultaneous localization and mapping: Part I,” IEEE Rob. Automat. Mag. 13 (2), 99110 (Jun. 2006).CrossRefGoogle Scholar
18. Bailey, T. and Durrant-Whyte, H., “Simultaneous localization and mapping (SLAM): Part II,” IEEE Rob. Automat. Mag. 13 (3), 108117 (Sep. 2006).CrossRefGoogle Scholar
19. Fulgenzi, C., Ippoliti, G. and Longhi, S., “Experimental Validation of FastSLAM Algorithm Characterized by a Linear Features Based Map,” Proceedings of the 8th International IFAC Symposium on Robot Control (Bologna, Italy, 2006).CrossRefGoogle Scholar
20. Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B., “FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem,” Proceedings of the AAAI National Conference on Artificial Intelligence (Edmonton, Canada, 2002).Google Scholar
21. Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B., “FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges,” Proceedings of the International Joint Conference on Artificial Intelligence (Acapulco, Mexico, 2003) pp. 1151–1156.Google Scholar
22. Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-Whyte, H. F. and Csorba, M., “A solution to the simultaneous localization and map building (SLAM) problem,” IEEE Trans. Rob. Automat. 17 (3), 229241 (Jun. 2001).CrossRefGoogle Scholar
23. Leonard, J. J. and Durrant-Whyte, H. F., “Simultaneous Map Building and Localization for an Autonomous Mobile Robot,” Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems, Vol. 3, (Osaka, Japan, 1991) pp. 14421447.Google Scholar
24. Anousaki, G. C. and Kyriakopoulos, K. J.. “Simultaneous localization and map building of skid-steered robots,” IEEE Rob. Automat. Mag. 14 (1), 7989 (Mar. 2007).CrossRefGoogle Scholar
25. Paz, L. M., Jensfelt, P., Tardós, J. D. and Neira, J., “EKF SLAM Updates in O(n) With Divide and Conquer SLAM,” Proceedings of the IEEE International Conference on Robotics and Automation (Rome, Italy, 2007) pp. 1657–1663.CrossRefGoogle Scholar
26. Guivant, J. E., Masson, F. R. and Nebot, E. M., “Simultaneous localization and map building using natural features and absolute information,” Rob. Autonom. Syst. 40 (2), 7990 (Aug. 2002).CrossRefGoogle Scholar
27. Armesto, L. and Tornero, J., “SLAM Based on Kalman Filter for Multi-Rate Fusion of Laser and Encoder Measurements,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2 (Senda Japan, 2004) pp. 18601865.Google Scholar
28. Bosse, M. C., Newman, P. M., Leonard, J. J. and Teller, S., “SLAM in large-scale cyclic environments using the Atlas framework,” Int. J. Rob. Res. 23 (12), 11131139 (Dec. 2004).CrossRefGoogle Scholar
29. Tomatis, N., Nourbakhsh, I. and Siegwart, R., “Hybrid simultaneous localization and map building: A natural integration of topological and metric,” Rob. Autonom. Syst. 44 (1), 314 (Jul. 2003).CrossRefGoogle Scholar
30. Wang, C. M., “Location Estimation and Uncertainty Analysis for Mobile Robots,” Proceedings of the IEEE International Conference on Robotics and Automation (Philadelphia, PA, USA, 1988) pp. 1230–1235.Google Scholar
31. Jetto, L., Longhi, S. and Venturini, G., “Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots,” IEEE Trans. Rob. Automat. 15 (2), 219229 (Apr. 1999).CrossRefGoogle Scholar
32. Ayache, N. and Faugeras, O. D., “Maintaining representations of the environment of a mobile robot,” IEEE Trans. Rob. Automat. 5 (6), 804819 (Dec. 1989).CrossRefGoogle Scholar
33. Kak, A. C., “Depth Perception for Robots,” In: Handbook of Industrial Robotics (Nof, S. Y., ed.) (John Wiley & Sons, New York, 1985) pp. 272319.Google Scholar
34. Hough, P. V. C., “Method and Means for Recognizing Complex Patterns,” U.S. Patent 3,069,654 (Dec. 1962).Google Scholar
35. Sobel, I. E., Camera Models and Machine Perception Ph.D. Thesis (Electrical Engineering Department, Stanford University, CA, 1970).Google Scholar
36. Bonci, A., Di Francesco, G. and Longhi, S., “A Bayesian Approach to the Hough Transform for Video and Ultrasonic Data Fusion in Mobile Robot Navigation,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vol. 3 (Hammamet, Tunisia, 2002).Google Scholar
37. Angeloni, A., Leo, T., Longhi, S. and Zulli, R., “Real Time Collision Avoidance for Mobile Robots,” Proceedings of the 6th International Symposium on Measurement and Control in Robotics (Brussels, Belgium, 1996) pp. 239244.Google Scholar
38. Bender, E. A., Mathematical Methods in Artificial Intelligence (Wiley-IEEE Computer Society Press, Los Alamitos, CA, 1996).Google Scholar
39. Blair, W. D. and Bar-Shalom, Y., “Tracking maneuvering targets with multiple sensors: Does more data always mean better estimates?,” IEEE Trans. Aerospace Electron. Syst. 32 (1), 450456 (Jan. 1996).CrossRefGoogle Scholar
40. Borenstein, J. and Koren, Y., “Error eliminating rapid ultrasonic firing for mobile robot obstacle avoidance,” IEEE Trans. Rob. Automat. 11 (1), 132138 (Feb. 1995).CrossRefGoogle Scholar
41. Beckerman, M. and Oblow, E. M., “Treatment of systematic errors in the processing of wide-angle sonar sensor data for robotic navigation,” IEEE Trans. Rob. Automat. 6 (2), 137145 (Apr. 1990).CrossRefGoogle Scholar
42. Bar-Shalom, Y. and Fortmann, T. E., Tracking and Data Association (Academic Press, San Diego, CA, 1988).Google Scholar