Published online by Cambridge University Press: 16 September 2014
We present the design, control, and human–machine interface of a series elastic holonomic mobile platform, AssistOn-Mobile, aimed to administer therapeutic table-top exercises to patients who have suffered injuries that affect the function of their upper extremities. The proposed mobile platform is a low-cost, portable, easy-to-use rehabilitation device targeted for home use. In particular, AssistOn-Mobile consists of a holonomic mobile platform with four actuated Mecanum wheels and a compliant, low-cost, multi-degrees-of-freedom series elastic element acting as its force sensing unit. Thanks to its series elastic actuation, AssistOn-Mobile is highly backdriveable and can provide assistance/resistance to patients, while performing omni-directional movements on plane. AssistOn-Mobile also features Passive Velocity Field Control (PVFC) to deliver human-in-the-loop contour tracking rehabilitation exercises. PVFC allows patients to complete the contour-tracking tasks at their preferred pace, while providing the proper amount of assistance as determined by the therapists. PVFC not only minimizes the contour error but also does so by rendering the closed-loop system passive with respect to externally applied forces; hence, ensures the coupled stability of the human-robot system. We evaluate the feasibility and effectiveness of AssistOn-Mobile with PVFC for rehabilitation and present experimental data collected during human subject experiments under three case studies. In particular, we utilize AssistOn-Mobile with PVFC (a) to administer contour following tasks where the pace of the tasks is left to the control of the patients, so that the patients can assume a natural and comfortable speed for the tasks, (b) to limit compensatory movements of the patients by integrating a RGB-D sensor to the system to continually monitor the movements of the patients and to modulate the task speeds to provide online feedback to the patients, and (c) to integrate a Brain–Computer Interface such that the brain activity of the patients is mapped to the robot speed along the contour following tasks, rendering an assist-as-needed protocol for the patients with severe disabilities. The feasibility studies indicate that AssistOn-Mobile holds promise in improving the accuracy and effectiveness of repetitive movement therapies, while also providing quantitative measures of patient progress.