Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T04:54:47.134Z Has data issue: false hasContentIssue false

Phantom Theories of pre-Eudoxean Proportion

Published online by Cambridge University Press:  01 September 2003

Ken Saito
Affiliation:
Osaka Prefecture University, Japan

Abstract

Argument

This paper proposes an alternative view to Becker’s reconstruction of pre-Eudoxean theory of proportion. No extant document explicitly demonstrates the alleged alternation of theories of proportion before Book V of the Elements. Books V and VI of the Elements are not so complete as a theory of proportion in the abstract, and can be interpreted better as a collection of propositions useful in geometry. It follows then that older theories, if they existed at all, must have been less complete. Prevailing interest in geometry on the part of Greek mathematicians is also visible in some expressions in Book VI for specific ratio and proportion used only in definite geometric context. It is therefore more fruitful to consider the “theory” of proportion before Eudoxus as an aggregate of techniques about proportion that are useful in geometry, rather than as the result of a conscious effort to build a logically consistent set of propositions based on a definition.

Type
Articles
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, F.2003. “Drowning by Multiples: Remarks on the Fifth Book of Euclid’s Elements, with Special Emphasis on Prop. 8.Archive for History of Exact Sciences 57:175-242.Google Scholar
Apollonius.1891-1893. Apollonii pergaei quae graece exstant cum commentariis antiquis. Edited by I. L. Heiberg.2 vols. Leipzig.
Aristotle.1984. The Complete Works of Aristotle. 2 vols. Edited by Jonathan Barnes.Princeton: Princeton University Press.
Becker, O.1933. “Eudoxos-Studien I: Eine voreudoxische Proportionenlehre und ihre Spuren bei Aristoteles und Euklid.Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abt.B, Bd. II:311-330.Google Scholar
Dorandi, T.ed. 1991. Filodemo, Storia dei Filosofi [.] Platone e L’Academia (PHerc. 1021 e 164). Naples: Bibliopolis.
Euclid.[1925] 1956. The Thirteen Books of the Elements. 3 vols. >2nd ed. Cambridge University Press. Reprint, New York: Dover Publications.
Fowler, D.1999. The Mathematics of Plato’s Academy: A New Reconstruction, 2nd. ed. Oxford: Clarendon Press.
Giusti, E.1999. Ipotesi sulla natura degli oggetti matematici. Turin: Bollati Boringhieri. (French translation. 2000. La naissance des objets mathémathiques. Paris: Ellipses.)
Knorr, W. R.1978. “Archimedes and the pre-Euclidean Proportion Theory.” Archives internationales d’histoire des sciences 28:183-244.Google Scholar
Mendell, H.2002. “Two Traces of Two-Step Eudoxean Proportion Theory in Aristotle.” Paper read at Sixth International Conference on Ancient Mathematics. Not yet published.Google Scholar
Knorr, W. R.1996. “The Wrong Text of Euclid: On Heiberg’s Text and Its Alternatives.Centaurus 38:208-276.Google Scholar
Knorr, W. R.2001. “The Impact of Modern Mathematics on Ancient Mathematics.Revue d’histoire des mathématiques 7:121-135.Google Scholar
Micheli, G.1995. Le origini del concetto di macchina. Florence: Olschki.
Netz, R.1999. The Shaping of Deduction in Greek Mathematics. Cambridge: Cambridge University Press.
Pappus of Alexandria.1986. Book 7 of the Collection. Edited with Translation and Commentary by Alexander Jones. 2 vols. New York: Springer-Verlag.
Proclus. 1873. Procli Diadochi in primum Euclidis Elementorum librum commentarii. Edited by G. Friedlein.
Proclus.1970. A Commentary on the First Book of Euclid’s Elements. Translated by G. R. Morrow. Princeton: Princeton University Press.
Rommevaux S.,A., Djebbar,and B. Vitrac.2001. “Remarques sur l’histoire du texte des Éléments d’Euclide.Archive for History of Exact Sciences 55:221-295.Google Scholar
Saito, K.1993. “Duplicate Ratio in Book VI of Euclid’s Elements.Historia Scientiarum, 2nd ser. 3:115-135.Google Scholar
Saito, K.1994. “Proposition 14 of Book V of the Elements – A Proposition that remained a Local Lemma.Revue d’histoire des sciences 47:273-284.Google Scholar
Saito, K.1995. “Doubling the Cube: A New Interpretation of Its Significance for Early Greek Geometry.Historia Mathematica 22:119-137.Google Scholar
Simplicius.1882-1885. Simplicii in Aristotelis Physica commentaria. Edited by H. Diels.Commentaria in Aristotelem Graeca, vols. 9-10. Berlin.
Szabó, Á.1964. “Ein Beleg für die voreudoxische Proportionenlehre? Aristoteles: Topik Θ3, p.158b29-35.Archiv für Begriffsgeschichte 9:151-171.Google Scholar
Taisbak, Ch. M.1999. “Splitting a square: Analysis of Euclid’s Elements xiii.10.Centaurus 41:293-295.Google Scholar
Unguru, S.2002. “‘Amicus Plato sed…’ Fowler’s New Mathematical Reconstruction of the Mathematics of Plato’ Academy.Annals of Science 59:201-210.Google Scholar
Vitrac, B., trans. 1990-2001. Euclide d’Alexandrie. Les Éléments. 4 vols. Paris: Presses Universitaires de France.
Vitrac, B.1996. “Mythes (et réalités?) dans l’histoire des mathématiques grecques anciennes.In L’Europe mathématique. Edited by C. Goldsteinet al., 33-51. Paris: Éditions de la Maison des Sciences de l’Homme.